Energy Efficiency in Buildings – A GRIHA Approach

Pradeep Kumar

Associate Director Building Energy System Sustainable Habitat Division TERI, New Delhi

Design Challenge

Non-Air conditioned Buildings

Room Temperature : Up to 38 ° C

45 kWh/m²-yr

Air conditioned Buildings

Energy Efficient Building

Design Approach

Inefficiency in Building

Why?

Energy Efficiency in Green Building

Green Buildings

350 kWh/m²-yr

210 kWh/m²-yr 40% reduction

200 kWh/m²-yr

120 kWh/m²-yr 40% reduction

Energy Efficiency – GRIHA Approach

Energy Consumption Breakup in Existing Building

Luxury Hotel

Office Building

Hospital

Efficient HVAC System

Adequate comfort condition in India

- NBC recommends temperature range of 23 ° C ~ 26 ° C and RH range of 50 ~ 60%
- LEED India accepts comfort range 26 +/- 2 ° C and RH 60%
- □ Many people in favor of 27+2 ° C and RH 65%

Present Trends in HVAC System Design

Distributed system

- VRV or VRF system
- Wall mounted split system with inverter control
- Centralized system
- Air system
 - □ AHUs with VFD fan control & VAV boxes
 - □ ERVs
- Plant Design
 - USD Chillers
 - Only variable primary CHW loop
 - □ CSD CW pumps & CTs
 - Dedicated Plant Management System

Innovative HVAC System Design

- Active chilled beam with DOAS and geothermal cooling for condenser water
- Radiant floor cooling system with DOAS system
- Earth air tunnel system along with two stage evaporative cooling system and CHW coil
- Thermal mass storage system along with two stage evaporative cooling system and CHW coil

Energy Efficiency in HVAC System

Project Description

- Building type:
- □ Location:
- **Total AC built-up area:**

600 room 5-star luxury hotel Chennai 820000 ft²

Load estimation

Total coil load:
Peak building load:

3930 TR 2950 TR (Diversity @ 0.75)

Variable centrifugal chiller

Variable primary pumps

Constant condenser pumps

Constant cooling tower

Case-1 : Only Chiller performance optimized

Estimated cooling demand

Annual cooling demand : 18448307 TR-h

Performance analysis

January					6#600 T			
Hour	DBT (OF)	WBT (OF)	Cooling Ioad (TR)	ECWT (OF)	No of operating chillers	Capacity of each chiller	IKW/TR	kW
0	67 1	65.8	1183	72 8	2	(IK) 592	0 512	606
1	66.6	64.6	1083	72.6	2	542	0.512	543
2	65.5	64	1083	71	2	542	0.497	538
3	65.1	63.7	1063	70.7	2	532	0.497	528
4	64.2	63.1	1002	70.1	2	501	0.503	504
5	63.7	60.8	845	67.8	2	423	0.504	426

Total daily load * No. of days* DF = Monthly kWh

Chiller sizing

6*600 CSD Chiller

6*600 VSD Chiller

5*750 VSD Chiller

Avg. operating Chiller COP

Avg. operating plant COP

Annual cooling demand: 18448307 TR-h

IKW/TR : 13632121/18448307 = **0.739**

COP : **4.76**

Case-2 : Chiller & Auxiliaries performance optimized

Simulated hourly cooling demand

Annual cooling demand: 19623809 TR-h

Energy Performance of Chiller

Hour	Cooling	Chiller	
	demand	(kW)	
	(TR)		
1	1759	767	
2	1697	728	
3	1671	714	
4	1657	706	
5	1605	660	
6	1589	652	

an Nic

Chiller Sizing

Equipment Sizing

Total coil load:Peak building load:

3930 TR 2950 TR (Diversity @ 0.75)

Energy performance of auxiliary equipment

Hour	Cooling demand (TR)	Variable primary chilled water (KW)	CW pump (KW)	Cooling tower fan (KW)
1	1759	91.46	110	60
2	1697	88.24	110	60
3	1671	86.89	110	60
4	1657	86.14	110	60
5	1605	83.45	110	60
6	1589	82.65	110	60

CT Selection

Pump Selection

Avg. Operating COP

Hour	Cooling demand (TR)	Variable primary chilled water (KW)	CW pump (KW)	Cooling tower fan (KW)	Chiller (kW)	Plant (IKW/TR)
1	1759	91.46	110	60	767	0.585
2	1697	88.24	110	60	728	0.581
3	1671	86.89	110	60	714	0.581
4	1657	86.14	110	60	706	0.581
5	1605	83.45	110	60	660	0.569
6	1589	82.65	110	60	652	0.569

Avg. operating COP : 0.674 IKW/TR

Case-3 : Plant performance optimized

Plant Optimization

Case-1: 4 # 900 VSD Centrifugal Chiller with PIDs controls

Case-2: 4 # 900 VSD Centrifugal Chiller with all variable system with demand based controls

Load curve

Optimsed COP with IPC

Plant Selection

Plant COPs

Design COP of plant: 0.8 IKW/TR or less

Avg. Opt. COP of plant: 0.6 IKW/TR or less

Recommendation

- □ Optimize WWR as per CRIHA criterion -13
- Select building materials as recommended by ECBC
- Target cooling load (> 500 ft²/TR) and energy performance (< 95 kWh/m²-yr) – CRIHA criterion-14
- Take plant efficiency as a measure of cooling system efficiency
- Target plant efficiency (< 0.8 kW/TR) * avg. opt. plant efficiency (< 0.6 kW/TR)</p>
- Reduce dependence on Non Green Power GRIHA criterion 18 & 19

