

FRESNEL COLLECTORS FOR SOLAR THERMAL COOLING APPLICATIONS

25 % of all daily news are about natural disasters, saving energy and the necessity of reducing our carbon footprint

HOWEVER: WHAT WE ARE DOING IN REALITY? DEFINITELY NOT ENOUGH!!!

Industrial Solar Fresnel collectors are designed to generate heat at 130 - 400 \degree C

Development since 1999	
------------------------	--

Pilot-Experience since 2005

Commercialization since 2007

- Low wind load
- Good weight-spread
- High ground usage factor
- No north-south alignment necessary compared to non-concentrating collectors

→Best suited for rooftop installation

THERMAL	FRESNEL	РТС	FRESNEL VS. PTC
PEAK POWER	GROUND AREA	GROUND AREA	GROUND USAGE FACTOR RATIO
88 kW _{th}	264 m ²	458 m ²	1,73
176 kW _{th}	528 m ²	869 m²	1,65
500 kW _{th}	1.500 m ²	2.462 m ²	1,64
1.0 MW _{th}	3.000 m ²	4.923 m ²	1,64
10.0 MW _{th}	30.000 m ²	48.574 m²	1,62

ADVANTAGES II

- Primary mirrors made of flat glass vs. aluminum (durability, reflectivity)
- Precise temperature and power control
- Less absorber tube per m² allows high quality 70 mm vacuum absorber tube (industrial standard)
- Remote control and monitoring via LAN and internet

→ Meets industry requirements

 \rightarrow Precise temperature control

- Stationary receiver, no twisting of flexible connections
- Concentrated sunlight hits absorber tube always from below

→Best suited for direct steam generation

- Easy cleaning (flat glass/ good access)
- Low water demand for cleaning
- Reliable components

→Low O&M

- Low wind load
- Good weight-spread
- High ground usage factor
- No north-south alignment necessary
- Primary mirrors made of flat glass vs. aluminum (durability, reflectivity)
- Precise temperature and power control
- Less absorber tube per m² allows high quality 70 mm vacuum absorber tube (industrial standard)
- Remote control and monitoring via LAN and internet
- Stationary receiver, no flexivle connections
- Concentrated sunlight hits absorber tube always from below
- Easy cleaning (flat glass / good access)
- Low water demand for cleaning
- Reliable components (mirror/tube/drives)

Rooftop installation

Industry

Steam

Low O&M

- Heat transfer fluid
 - Pressurized water
 - Steam
 - Thermal oil
- Receiver SCHOTT PTR[®] 70
 - Maximum pressure up to **120 bar** (different versions 40, 60, 120 bar)
 - Maximum temperature
 up to 380 ° C with thermal oil
 up to 330 ° C with saturated steam or pressurized water
 - Thermal loss per m² of primary reflector u1 = $0.00043 \text{ W/(m^2K^2)}$ (according to DLR)

- Peak load of electricity is already determined by airconditioning demand in some areas
- At the same time, high solar gains may be utilised

Sydney West Bulk Supply Point Load Profile

Source: Fraunhofer ISE

- Savings in primary energy consumption
- Reduction in peak electricity power demand
- Reduction in CO₂ emissions
- Refrigerants without global warming potential; favorable: water
- All-season use of the solar thermal system: heating, cooling, domestic hot water

Source: Henning, Fraunhofer ISE

	Double effect H ₂ O/LiBr	Triple effect H ₂ O/LiBr	Single effect NH ₃ /H ₂ O
Temperature lift (max)	25 K	25 K	55 K
Temperature of Cold	5-20°C	5-20°C	-20° -20° C
Driving temperature	140-180°C	230-270°C	160-180° C
Max. COP	1,1-1,4	1,6-2,1	0,6-0,7

Collector

- •16 modules, 352m² aperture area
- •Pressurized water circuit at 16 bar
- •Operating temperature 180 $^\circ$ C

Absorption chiller

- 2E water-LiBr
- Cooling capacity 174 kW

- Built in 2007
- Aperture area 352 m²
- Pressurized water circuit at 16 bar
- Outlet temperature 180°C
- Double effect absorption chiller with 50 TR / 174 kW cooling capacity

Collector

- 64 modules, 1408m² aperture area
- Pressurized water circuit at 16 bar
- Operating temperature 180 $^\circ\,$ C

Absorption chiller

- 2E water-LiBr
- Cooling capacity 650 kW

Climat

COMFORT-PERFORMANCE

- No cooling decreased performance Low energy costs Low operation costs
- Full Air-Conditioning Constant temperature Draught, Noise, SBS High energy costs High operation costs
- Thermo-Active-Building-Systems Temperature ramps Reasonable energy costs Low operation costs

... which directly influences their labour efficiency

Labour productivity as a function of operative (room) temperature

We all spend 90 % of the day time indoors: at work, commuting and at home

BUT: WHAT IS COMFORT FOR US?

Reem Emirates Aluminum HQ, Abu Dhabi, UAE

•Radiant floor cooling 5 000m² •Central Air Handling Unit

31

GARDENS BY THE BAY SINGAPORE

Figure 27: Thermal power in Cool Dry Conservatory for unshaded floor cooling area, maximum floor cooling power (fluid side) not fixed and slab cooling fluid (water) supply temperature 10°C

Material properties:

- PE-RT plastic tube
- 5 layer technology / 5 layer technology
- · High acid resistance and temperature stability
- Co-extruded EVOH layer according to DIN 4724
- Pressure-resistant
- Corrosion-resistant
- Ethylene octene co-polymer / medium density
- High durability and fatigue strength
- Unique molecular structure with linear ethylene main chain and the octene side chains
- Particularly flexible and easy to install (oxygen impermeable according to DIN 4726)
- Extreme acid resistance and resistance to chemicals
- · Very low flow resistance in the inner tube
- Extremely good thermal conductivity

Why radiant cooling with solar cooling

- We can use chilled water temperature above 12 ° C
- PERFECT FOR ABSORPTION CHILLERS as the capacity increase with higher chilled water leaving temperature (30 -50 % more capacity)
- Higher comfort, less O&M cost
- SUNTAINABILITY. LETS TAKE THIS RESPONSIBILITY.

Table 2B - 2: Primary inputs and outputs of tests varying chilled-water supply temperature

	Measurement values for chiller inputs			Measurement values for chiller outputs						
	Chilled- water flow	Cooling- water flow	Chilled water return temp.	Cooling- water supply temp.	Steam supply temp.	Condensate return temp.	Steam flow	Chilled- water supply temp.	Cooling load	
Test	F1	F6	T20	T32	T22	T23	F2	T21	Q _{cooling}	COP
No.	m³/h	kg/s	°C	°C	°C	°C	kg/h	°C	kW	
1	2.03	1.43	10.93	30.49	165.30	99.14	17.53	5.14	13.66	0.88
2	2.07	1.44	11.11	30.40	165.32	98.99	18.35	5.37	13.86	0.91
3	2.06	1.43	12.22	30.57	165.25	99.16	20.10	6.01	14.87	0.94
4	2.08	1.43	12.22	30.43	165.30	98.92	18.65	6.16	14.66	0.95
5	2.04	1.43	13.52	30.46	165.20	99.13	19.78	6.91	15.65)1.01
6	2.08	1.43	14.44	30.59	165.14	99.11	20.88	7.70	16.33	0.99
7	2.07	1.43	15.56	30.68	165.13	99.12	22.90	8.35	17.35	1.02
8	2.07	1.43	16.67	30.66	165.05	99.14	23.28	9.20	17.95	1.07
9	2.10	1.43	17.77	30.61	164.94	99.15	24.03	9.90	19.21	1.09
10	2.10	1.43	18.88	30.53	164.74	99.15	25.47	10.69	19.98)1.11
11	2.13	1.43	22.02	30.50	164.66	99.14	25.85	13.53	21.03	1.14

Thank you for your attention.

Dipl.-Ing. Volker Rühle, Director Centrogulf LLC.

AL HAWAI TOWER 904 | SHEIKH ZAYED ROAD | P.O.BOX: 29717 DUBAI – UAE | T: +971 4 343 4004 | F: +971 4 321 4530

info@centrogulf.ae | www.centrogulf.ae