Low Carbon Materials, Environment & Sustainable Constructions

B. V. Venkatarama Reddy
Professor
Department of Civil Engineering &
Centre for Sustainable Technologies
Indian Institute of Science
Bangalore – 560 012, INDIA

Outline of the presentation

- Some issues on sustainability of construction sector
- Energy & Low Embodied Carbon Materials
- Alternative building technologies:
 Some examples & technical details

Sustainability?

Sustainable Society

is the one which manages its economic growth in such a way as to do no irreparable damage to its environment

It satisfies the needs of its people without jeopardizing the prospects of future generations

Source:

Dr. JC Kumarappa (1930), Concept of "Economy of Permanence"

Sustainability is associated with.....

- Earth's capacity to sustain a large human population (~7 billion & still rising)
- Pollution causing climate change (GHG emissions & global warming)
- Managing the material resources in a sustainable fashion
- Development with minimum or no damage to environment

Energy consumption & Developments in building materials

Prior to 4000 BC	4000 BC - 1800 AD	1800 AD - To-date
Mud, stones, reeds/thatch Sun dried bricks/adobe	Burnt bricks ime, ron products ozz. cements	Aluminium Portland Cement Steel, Plastics, composites, Smart materials, etc
Zero energy materials	Medium energy materials	High energy materials

(Depends on type of product/material)

Construction materials

Materials resources
Soil
Aggregates
Minerals/chemicals
Timber, Biomass,
etc

- Limited,
- Mining resources is

un-sustainable

• Indiscriminate use causes environmental damage

Energy expenditure:

Causes

- Pollution
- GHG emissions

Energy Resources

Electricity

Coal

Oil

Biomass

Renewable energy, etc

Too much Emphasis on

GHG emission reduction

Attempt to link the

Sustainable Construction

to

concept of Green buildings

Very little or less Emphasis on

- Conservation of dwindling basic Material resources
- Scarcity due to mining of raw material resources
- Competition to Agriculture
- Damage to Environment due to indiscriminate mining of raw materials

Materials consumed in bulk quantities

Type of material	Annual consumption
1. Burnt Clay Bricks	150 x 10 ⁹
2. Cement	220 x 10 ⁶ t
3. Steel	45 x 10 ⁶ t
4. Coarse aggregates	300 x 10 ⁶ m ³
5. Fine Aggregates	350 x 10 ⁶ m ³

Vol. of materials produced & consumed: ~1.60 billion t/year

Type of material	Annual per capita consumption
Steel	50 kg
Cement	200 kg
Burnt bricks	400 kg
Aggregates	900 kg
Food grains	200 kg

~30% of GHG emissions from Construction sector

Case of Cement & Burnt clay bricks

- ... Carbon emissions &
- ... Pressure on natural resources

Cement production & CO₂ emissions (MMT/Y)

	1990	2005	2010
Global			
Cement Production (t)	1040	2270	~2800
CO₂ Released (t)	900	2040	2520

China			
Cement Production (t)	~300	1000	~1600

India			
Cement Production (t)	45	127	~240

During 20 years, the CO₂ emissions from cement/clinker production

- --- has more than doubled (globally)
- --- has gone up by >4 5 times (India & China)

Cement production & consumption

CO₂ Released: 0.70 - 0.9 ton/ton of cement

Materials required to utilise 1 ton of cement 5 – 6 tons aggregates

Aggregates:

like natural river sand & crushed stone are becoming scarce commodities & come with a heavy environmental price

Efforts to reduce CO₂ emissions and improving energy efficiency will not lead cement industry becoming sustainable?

Burnt clay bricks

- 6000 years old technology
- Annual global brick production:
 *1100 x 10⁹
- Fertile top soil is consumed
- Clay minerals: permanently changed

^{*}Ellen Baum, Black carbon from brick kilns, 2010

Life cycle of burnt clay brick

Need for easily recyclable materials

- Effect minimum changes to natural materials during production processes
- Discarded manufactured materials should go back to their native state with minimum environmental costs
- Produce environmentally benign construction materials

There are questions on

 Sustainability of existing construction practices with reference to mining of resources?

Are there options or alternatives?

Possible options

- Develop recyclable & reusable alternative construction materials
- Utilise solid wastes for the production of construction materials
- Use structurally & functionally efficient construction systems
- Develop building products from renewable materials like bio-mass, bamboo, timber, etc.
 & maximise their use

...zero energy building!

...we have a lot to learn from vernacular (Palaces in Jaipur India, Earthen structures in Iran, etc)!

Climatic Response

No (Ecological) footprint

...modern transformations

NATION

Rural India matches urban

spending pattern: survey

...transition-I

...transition-II

...transition-III

...consider this!

...transition-V, VI, VII...

...modern pursuits

...modern pursuits

Mining resources without jeopardizing the prospects of future generations ???....

Construction sector

Is surviving on mined material resources

Anything mined: Un-Sustainable

Sustainable Construction ???

Green buildings need not be sustainable constructions

Sustainability of construction sector?

- Energy conservation
- GHG emission reduction

Possible

Mining resources for materials production

Sustainability ???

- Devise techniques to recycle solid wastes into building products
- Essential to recycle & reuse materials
- Maximise use of renewable materials like biomass, bamboo, timber based products

Affordable Housing Solutions?

- Economic considerations: cost & affordability?
- Affordable solutions & damage to environment
- Affordability, environment, green solutions: Conflicts

Possible options to develop affordable & eco-friendly housing technologies

- Maximum use of local materials
- Minimise transportation
- Develop low embodied carbon materials & technologies
- Decentralised production systems
- Scope for self-help
- Develop technologies from solid wastes
- Develop technologies from renewable materials like bio-mass, bamboo, etc.

Low carbon Building Materials & Technologies

- Cement Stabilised Soil Blocks (CSSB)
- Cement stabilised rammed earth (CSRE)
- Fly ash blocks
- Straw-Bale Construction
- GluBam Glue-laminated Bamboo
- Alternative Roofing Systems

Cement Stabilised Soil Blocks (CSSB)

Filling the mould

Block Production (manual process)

Curing: sprinkling water for 4 weeks

Blocks of different shapes & sizes

CST Office, IISc 1985, B'lore

Residential building, 2004, Bangalore

Apartment complex load bearing walls, 2000

CSSB load bearing masonry walls

Courtesy: Dr. M. R. Yogananda

CST seminar hall complex IISc, Bangalore

CST seminar hall complex IISc, Bangalore, 2004

Courtesy:

Kiran Vaghela and Sandeep Virmani Kutch Nav Nirman Abhiyan Gujarat

Optimum soil grading limits maximising strength, dimensional stability and durability of stabilised soil blocks

Wet strength - Sandy Soil

Dry Strength - Sandy Soil

Dry strength - Silty Soil

Wet Strength - Silty Soil

Weight loss versus clay content of the block

Strength versus clay fraction

Reddy et al, J Mat. in Civil Engg. 2007

Source: Reddy & Kumar, Materials & Structures 2010

Specifications	Limiting values		
Material composition			
a) Clay fraction (<0.002mm)	10 – 15%		
b) Sand &silt fraction (0.002 – 4.75mm)	85% – 90%		
c) Block thickness (machines using static compaction process) d) Dry density of the block e) Weight loss (ASTM D559 test) f) Linear expansion on saturation	<100 mm > 1.80 gm/cc < 3% < 0.05%		
Stabiliser to Clay ratio: (a) Soils with non-expansive clay minerals (b) Soils with expansive clay minerals	≥ 0.50 ≥ 0.75		

Cement stabilised rammed earth (CSRE) construction

Mix

Small metal formwork

Wooden formwork (longer dimension)

Reddy & Kumar, J Mat. In Civil Engg. 2010

Strength of rammed earth (CSRE) & masonry

Rammed earth wallette Masonry wallette

	CSRE	Masonry with CSRE bricks
Compressive strength (MPa)	6.0	4.0

Source: Reddy & Kumar, Masonry International 2009

Cement stabilised Rammed earth

Courtesy: Kiran Vaghela and Sandeep Virmani *Kutch Nav Nirman Abhiyan,* Gujarat

Rammed earth house, Gujarat

Source:

Kiran Vaghela and Sandeep Virmani Kutch Nav Nirman Abhiyan, Gujarat

Kiran Vaghela and Sandeep Virmani Kutch Nav Nirman Abhiyan Gujarat

CSRE walls under construction – 3 storey buildings

Life cycle of cement stabilsed earth product

Burnt clay bricks: Clay is destroyedre-cycling as soil not possible

Cement Stabilised Soil block: Clay intact, aggregation of silt & sand particles

...... Recycling as soil possible

Fly ash blocks

Fly ash blocks/bricks for masonry

- Basic ingredients:
 - Fly ash, sand, lime or lime & cement
- Cementation is due to lime-fly ash reactions
- Lime-fly ash reactions are slow & hence need longer curing periods under ambient curing conditions
- Need for accelerating lime-fly ash reactions

How to accelerate lime-fly ash reactions or rate of strength gain?

Strength of steam cured & moist cured specimens

Details	Wet Comp. Strength (MPa)			
Lime (%)	6	10	14	18
24 hour steam curing at 80°C	1.84	2.65	2.92	3.10
28 days wet burlap curing	0.29	1.05	0.95	1.00

- 3 to 6 times difference in strength between steam curing & 28 day water curing
- Block is ready within 2 days after casting

Steam cured fly ash blocks

Lime-pozzolana reactions are slow at ambient temperatures & can be accelerated by steam curing at 80°C

- Sand
- Fly ash
- Lime/cement

Using a machine

At 80°C Efficient Steam chamber

Steam cured fly ash block unit

Compressive strength (wet) of blocks:

8 - 11MPa

Fly ash block load bearing building

Steam cured block building at IISc Bangalore 1998

Fly ash block houses

Tsunami rehabilitation housing, T. N.

Examples of Roofing Systems

CSSB Block Filler Slab Roof

Masonry vaults

Masonry domes

Straw-Bale Construction

Source: www.StrawBale.com

Straw-Bale Construction process

Source:

www.celebratebig.com/.../index.htm

Straw-Bale House

Source: www.StrawBale.com

Source: www.glubam.com/content/products

Bridge girders using GluBam

House using GluBan

House using GluBam, China

Source: www.glubam.com/content/products

Utilise solid wastes for construction materials

Type of solid waste	X 10 ⁶ t/year
Fly ash	112
Coal mine wastes	60
Lime stone waste	18
Construction waste	15
Blast furnace slag	11
Iron ore tailings	11
Copper mine tailings	4
Marble dust	6
Red mud, lime sludge, phospho-gypsum, zinc tailings, kiln dust, gold mine tailings etc + Organic wastes, MSW, etc	20
Inorganic industrial/mine wastes (total)	~300 X 10 ⁶ t/year

Source: Gupta (1998), Ramachandra & Saira (2004), Asokan Pappu et al (2007)

- 200 X 106 tons of iron ore tailings stored in dams
- Iron ore Tailings: Potential sand substitute for constructions
- Can meet sand requirement of Karnataka state for several decades

Non-organic solid wastes

- Annual production: ~300 x 10⁶ t (India)
- Accumulated solid wastes (approx. estimates)

Fly ash & Bottom ash: 2000 x 106 t

Coal mine wastes: 3000 x 106 t

Mine tailings & others: ???

Energy in masonry/walls

Type of masonry / wall	Energy (GJ)		
	per tonne	per m³	
1. Burnt clay brick	1.25 – 2.40	2.00 - 3.40	
2. Stabilised mud block	0.25 - 0.35	0.50 - 0.60	
3. Hollow concrete block	0.80 – 1.00	1.30 – 1.60	
4. Fly ash brick	0.60 - 0.85	1.00 – 1.35	
5. Stabilised rammed earth wall	0.25 – 0.35	0.45 - 0.60	
6. Laterite, natural stone	0.00 - 0.10	0.15 - 0.30	
7. unstabilised rammed earth,	0.00 - 0.10	0.00 – 0.18	
8. Adobe, cob, pure mud walls	0.00 - 0.00	0.00 - 0.10	

Embodied energy

load bearing masonry 2 storey residential building (India)

Total built-up area = 150 m²

Specifications of the building	Total embodied energy of masonry walls (GJ/m²)		
	Burnt clay brick masonry	CSSB masonry	
Spread footing foundation, load bearing walls, R. C. floor & roof slab, concrete tile floor	3.00	1.6	

R. C. Framed structure:

- Embodied energy: 4.5 – 9 MJ/m²

Spread of low carbon building technologies in INDIA

>50,000 users of these technologies

>5,000 houses in the Bangalore City

Technology outreach to large sections of society:
∼ 700 x 10⁶ US\$ invested by public

 \sim 1.5 x 10⁶ t carbon emissions saved (worth \sim 20 x 10⁶ US\$)

Thank you

How is CSSB different from Burnt Clay Brick?

Details	SSB	Burnt Brick	
Raw material	Soil	Soil	
Binding mechanism	Cement, Lime etc.	Firing clay (>800°C)	
Clay mineral	Nearly intact in Cement SSB	Destroyed	
Getting back clay	Possible	Not possible	
Energy consumption	0.25 - 0.30 MJ/kg	1.0 - 1.60 MJ/kg	
Size & shape	Perfect	warped	
Strength	Can be designed	Fixed	

Type of stabilization	Atterberg's Limits		Soil Composition		
	Liquid Limit (%)	Plasticity Index	Sand	Silt	Clay
Soil: No Stabilization	33.3	25.6	44	36.4	19.6
7% Cement	30	19.6	57.7	33.6	8.7
7% Lime	23	13.6	71	26.3	2.7
15% Lime	15	3.1	80.7	18.9	0.4