Road Map Towards Net Positive Buildings

Minni Sastry Fellow & Area Convenor Centre for Research on Sustainable Habitat Division, TERI- Bangalore

GRIHA National Conference, N. Delhi, 14-15 February, 2013

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Industrial Energy Efficiency Sustainable Development Outreach Social Transformation

Sustainable Habitats

Net Zero / Positive Energy Buildings

- A Net Zero Energy Building / Positive Energy Building (NZEB/PEB) refers to a building with zero or net negative energy consumption.
- As on 23rd April, 2009, EU Parliament has requested all new buildings by 2019 to conform to zero energy and emission standards. (European Paliament, 2009)

Earth Science and Climate Change **Decentralized Electricity Solutions** Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources

Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Approach to Attain Net Positive Buildings

- Climate & Micro climate Analysis
- Bioclimatic architectural design and selection of materials
- Innovative system designs (Air conditioning & Lighting)
- Integration of Renewable Energy & Interaction with the grid

Intelligent Controls & BMS

Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Climate Analysis

Hourly weather file processing from daily data acquired from meteorology department

Solar Irradiation data

South

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
07:00												
08:00												
09:00	373	323								348	353	425
10:00	525	451		319					322	464	461	583
11:00	601	529	489							544	531	658
12:00	661	589	515	408			244	307	410	544	571	694
13:00	658	567	499	404				307	392	509	527	680
14:00	620	515	473						354	485	477	619
15:00	532	457	391							359	411	537
16:00	429	362										
17:00												
18:00	51				14.7							2.1

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology Sustainable Habitats Water Resources St Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats Industrial Energy Efficiency rity Sustainable Development Outreach Social Transformation

Sustainable Site Planning

- Wind analysis Potential to achieve thermal comfort through natural ventilation
- Solar Irradiation analysis Resource for daylight
- Urban Heat Island Studies / Microclimate air temperature studies - Helps reduce dependence upon air conditioning.

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats Industrial Energy Efficiency rity Sustainable Development Outreach Social Transformation

Out door Wind Flow analysis for High-rise structures

Modeling & Economic Analysis Social Transformation

Indoor Air Movement in Employee Quarters

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats Industrial Energy Efficiency rity Sustainable Development Outreach Social Transformation

Conceptual Sketch and actual CFD model of Window System Proposed For Non Ventilated Spaces

Conceptual sketch

CFD Model

Sustainable Urban Development: Minimizing urban heat island effect and imperviousness factor

Hypothesis

- Implementation of Urban Heat Island (UHI) mitigation measures for various urban surfaces will reduce the ambient air temperatures.
- Energy savings in air conditioned buildings will possible due to improved micro climate around the buildings.
- Increased permeability of the urban surfaces will reduce the storm water runoff.

Earth Science and Climate Change	Sustainable Habitats	ustainable Usbitate	
Decentralized Electricity Solutions	Water Resources	ustainable habitats	
Environment Education & Youth Services	Bio-Technology & Bio-Resources	Industrial Energy Efficiency	Ally he want the
Energy Environment Technology Development	Resources Regulation & Global Security	Sustainable Development Outreach	And trading the
Environment & Industrial Bio-Technology	Modeling & Economic Analysis	Social Transformation	

Site Selection in Bangalore under UHI Research

Earth Science and Climate Change Sustainable Habitats Decentr Sustainable Habitats Environment Edu Science Bio-Technology & Bio-Resources Industrial Energy Efficiency Environment Edu Science Bio-Technology & Bio-Resources Science Science

Resources Regulation & Global Security Sustainable Development Outreach Modeling & Economic Analysis Social Transformation

Simulation

Literature

Earth Science and Climate ChangeSustainable HabitatsSustainable HabitatsDecentralized Electricity SolutionsWater ResourcesSustainable HabitatsEnvironment Education & Youth ServicesBio-Technology & Bio-ResourcesIndustrial Energy EfficiencyEnergy Environment Technology DevelopmentResources Regulation & Global SecuritySustainable Development OutreachEnvironment & Industrial Bio-TechnologyModeling & Economic AnalysisSocial Transformation

Studies on Mitigation Options of UHI

- Hourly Air and surface temperatures monitoring
 - Over and under deck
 - Ambient & Indoor Temperatures

Literature

Field Study

Simulation

Mass RCC roof with white coat

Hourly Surface Temperature Profile on 2d April'12

Hypothesis Introduction

Literature

Field Study

Simulation

3 degC difference in underdeck surface temperature throughout the day

Constant under deck surface temperatures throughout the day

Green Roof

Hourly Surface Temperature Profile on 2nd April'12

- Overdeck surface temperature goes down below air temperature after watering grass in the evening
- Under deck surface temperature is constant at 26°C throughout the day

Simulation

Parametric runs for UHI Mitigation measures

Introduction

Hypothesis

Literature

Field Study

Simulation

Conclusion

Reduction in peak air temperature

- ⑦ 1.5^oC incase of Reflective roof
- 1.9°C incase of Green roofs

Energy Environment & L Environment & L

Cooling load reduction due to improved micro climate

Hourly cooling load variation of a typical commercial space with different micro climates

	Base Case	Reflective Roof	Green roof
Building Type	Commercial Office	Commercial Office	Commercial Office
Zone Area	40000Sft	40000Sft	40000Sft
Height	3 m	3 m	3 m
Lighting power density	1.4 W /ft ²	1.4 W /ft ²	1.4 W /ft ²
Equipment power density	0.75 W /ft ²	0.75 W /ft ²	0.75 W /ft ²
Occupants	275 ft ² / person	275 ft ² / person	275 ft ² / person
Occupancy Schedule	8 hours, 5 days a week	8 hours, 5 days a week	8 hours, 5 days a week
External wall	Uninsulated 230mm Brick Wall	Uninsulated 230mm Brick Wall	Uninsulated 230mm Brick Wall
External Roof Science and Climate Change	Uninsulated 150mm RCC Roof Sustainable Habitats	Uninsulated 150mm RCC Roof with reflective coat (albedo 0.9)	Green Roof with U- value 0.23W/m2
Glazing Specification Dev	e commercia Walasi Risowiges/rban I	Hegminicagar Effect and Impervi	ouenner Elear glass

Energy Environr Environment & ^{ygy D} sanei

Resources Regulation & Global Security Sustainable Development Outreach Modeling & Economic Analysis Social Transformation Simulation

Conclusion

ITC Bhadrachalam - Residential Township

Solar irradiation analysis - high rise dense development

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources

Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

Solar analysis for High-rise structures

3.5

3

2.5

Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Sustainable Development Outreach Modeling & Economic Analysis

Daylight Factor

Daylight availability across the floors

Increase in daylight and decrease in shading factor . especially in rooms facing inner courtyards - as we go up in dense developments

No additional shading for lower floors and an optimized • shading for upper floors is recommended to maintain uniform thermal and visual comfort conditions across the floors

Sustainable Habitats

Industrial Energy Efficiency Social Transformation

/wwshop/images/ManMarinCap.jpg http://u1.ipernity.com/u/2/3F/3A/604735.fef07a581.l.jpg http://u1.ipernity.com/u/2/3F/3A/604735.fef07a581.l.jpg

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Environment & Industrial Bio-Technology

Daylight Autonomy

It is essential to provide daylight in Kitchen, especially between 08:00hrs and 10:00hrs to reduce energy demand on artificial lighting.

Daylight Autonomy (DA) is calculated and found that 26.6% of the day time in a year, lighting level of 225 lux (with 60% VLT) is present in the space on the first floor.

Study of Daylight Glare Indices

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources

Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats Industrial Energy Efficiency rity Sustainable Development Outreach Social Transformation

High Performance Commercial Buildings Research Study under APP

Only ECBC Envelope Gives a Pay Back Period of 7 - 8 years

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Industrial Energy Efficiency Sustainable Development Outreach Social Transformation

Sustainable Habitats

High Performance Commercial Buildings Research Study under APP

ECBC Envelope

+

Daylight Integration

REDUCES THE PAY BACK PERIOD TO 4 YEARS

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Industrial Energy Efficiency Sustainable Development Outreach Social Transformation

Sustainable Habitats

Energy Performance Index (EPI)_Saving Potential

Earth Science and Climate Change Sustainable Habitats **Decentralized Electricity Solutions** Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Power Grid Corporation of India Limited Campus at Bangalore

Project Details

Site Area Built-Up Area : 12 acres : 17,305 Sq.m

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

Solar analysis of PGCIL building for window optimization

Earth Science and Climate Change	Sustainable Habitats	ustainable Usbitate	
Decentralized Electricity Solutions	Water Resources	Sustainable Habitats	
Environment Education & Youth Services	Bio-Technology & Bio-Resources	Industrial Energy Efficiency	Ally to such the
Energy Environment Technology Development	Resources Regulation & Global Securit	y Sustainable Development Outreach	timiting the floor
Environment & Industrial Bio-Technology	Modeling & Economic Analysis	Social Transformation	

Window design optimization for PGCIL Buildings, Bangalore

Integration of light pipes in PGCIL headquarters

Earth Science and Climate Change **Decentralized Electricity Solutions** Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Building envelope optimization for Air conditioned and Non Air conditioned spaces

		Roof	Wall	Glazing	_View Wi	indow	AC Spaces
	Alternative	U-Value	U-Value	U-Value	SHGC	VLT	Reduction in TR Load
		W/m2K	W/m2K	W/m2K			(%)
1	Base Case	2.49	3.17	6.17	0.815	0.88	
2	ECBC Roof Case_Over deck	0.36	3.17	6.17	0.815	0.88	1.76
3	ECBC Roof Case_Under deck	0.37	3.17	6.17	0.815	0.88	-0.18
4	Glazing optimised Case	2.49	3.17	1.59	0.28	0.4	4.20
5	Cumilative 1(Over Deck)	0.36	3.17	1.59	0.28	0.4	9.67
6	Cumilative2 (Under Deck)	0.37	3.17	1.59	0.28	0.4	7.93

Earth Science and Climate ChangeSustainable HabitatsSustainable HabitatsDecentralized Electricity SolutionsWater ResourcesSustainable HabitatsEnvironment Education & Youth ServicesBio-Technology & Bio-ResourcesIndustrial Energy EfficiencyEnergy Environment Technology DevelopmentResources Regulation & Global SecuritySustainable Development OutreachEnvironment & Industrial Bio-TechnologyModeling & Economic AnalysisSocial Transformation

Innovative & Efficient Lighting Design

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology Sustainable Habitats Water Resources St Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources

Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Industrial Energy Efficiency Sustainable Development Outreach Social Transformation

stainable Habitats

Innovative& Efficient Air conditioning systems

- Achieve thermal comfort with minimal refrigeration
- Set high temperature et points 27deg C-28degC with high air volume (ach) to achieve the same thermal comfort as 24deg C.
- Low Energy cooling strategies -
 - EAT +2stage Evaporative cooling + Refrigeration
 - Thermal Mass Storage+2 stage evaporative cooling + Refrigeration
 - Radiant cooling
 - Night purge to avoid heat build.

Earth Science and Climate Change	Sustainable Habitats	ustainable Usbitate		
Decentralized Electricity Solutions	Water Resources	ustainable nabitats		
Environment Education & Youth Services	Bio-Technology & Bio-Resources	Industrial Energy Efficiency	Ally he want the	
Energy Environment Technology Development	Resources Regulation & Global Security	y Sustainable Development Outreach	And the And the	
Environment & Industrial Bio-Technology	Modeling & Economic Analysis	Social Transformation		

Annual Energy Savings

Earth Science and Climate Change Decentralized Electricity Solutions	Sustainable Habitats Water Resources	Sustainable Habitats	Acard
Environment Education & Youth Services	Bio-Technology & Bio-Resources	Industrial Energy Efficiency	Ally to said the
Energy Environment Technology Development	Resources Regulation & Global Securit	y Sustainable Development Outreach	tradition from the
Environment & Industrial Bio-Technology	Modeling & Economic Analysis	Social Transformation	

Indicative Energy Performace Indices of typical commercial offices in different climates

Earth Science and Climate Change Decentralized Electricity Solutions	Sustainable Habitats Sater Resources S	ustainable Habitats	Access
Environment Education & Youth Services	Bio-Technology & Bio-Resources	Industrial Energy Efficiency	Ally to said the
Energy Environment Technology Development	Resources Regulation & Global Security	Sustainable Development Outreach	timiting the floor
Environment & Industrial Bio-Technology	Modeling & Economic Analysis	Social Transformation	

Integration of Renewable Energy -RETREAT

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology Sustainable Habitats Water Resources Bio-Technology & Bio-Resources

Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

Green interventions not limited to high end buildings.....

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology Sustainable Habitats Water Resources St Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

Solar passive silkworm rearing house for enhanced productivity

Thermal comfort requirement:

Rearing room: 23 to 25 deg C with 70-80% RH

Non uniform heating/cooling leads to loss in 50-70% of yield

Strategies for summer:

- Roof pond with insulation ;Insulated wall and roof; Wall shading
- Solar chimney on south wall with adjustable vents (to improve ACH in the rearing room)
- Air Inlet from north wall covered with wet gunny bags for added humidity

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global S

Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

Constructed solar passive silk worm rearing house

Building section for silkworm rearing house

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology

Sustainable Habitats Water Resources Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

Silkworm rearing being carried out in the constructed solar passive house

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology Sustainable Habitats Water Resources Bio-Technology & Bio-Resources

Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

Hourly Temperature profile on 16th Nov' 11 during Rearing 1

Thank you

minnim@teri.res.in

Earth Science and Climate Change Decentralized Electricity Solutions Environment Education & Youth Services Energy Environment Technology Development Environment & Industrial Bio-Technology Sustainable Habitats Water Resources St Bio-Technology & Bio-Resources Resources Regulation & Global Security Modeling & Economic Analysis

Sustainable Habitats

