Green Building Features for Climate Resilient Affordable Housing

Minni Sastry

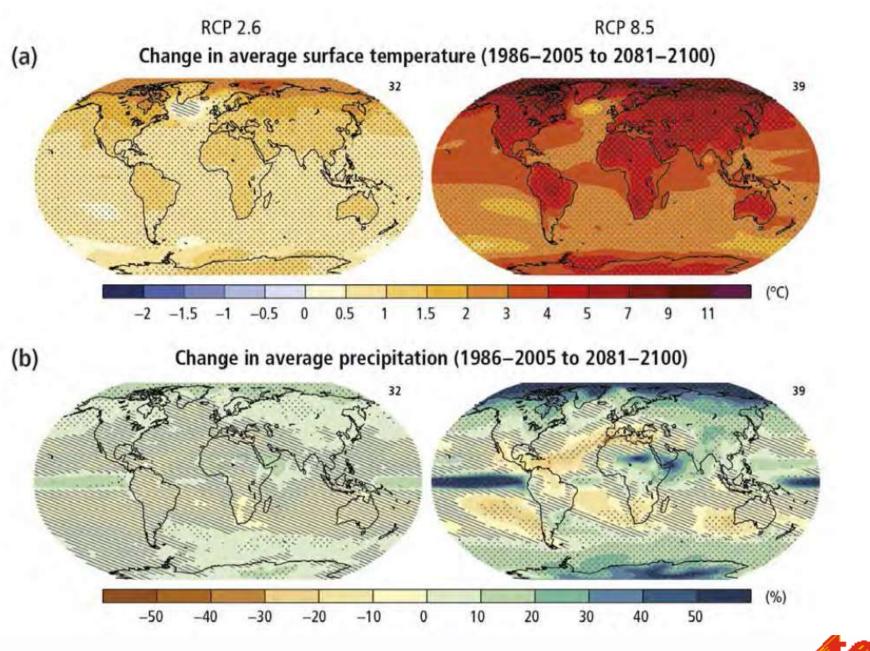
Fellow & Area Convenor- Centre for Research on Sustainable Building Science, TERI – Bangalore India

3rd February, ,2015

Presentation Outline

- Climate Vulnerabilities
- Climate Resilient Features for Built
 Environment
- Alternate Construction Technologies for Climate Resilient Housing
- Affordable Green Building features for Climate Resilient Housing
- Recommendations

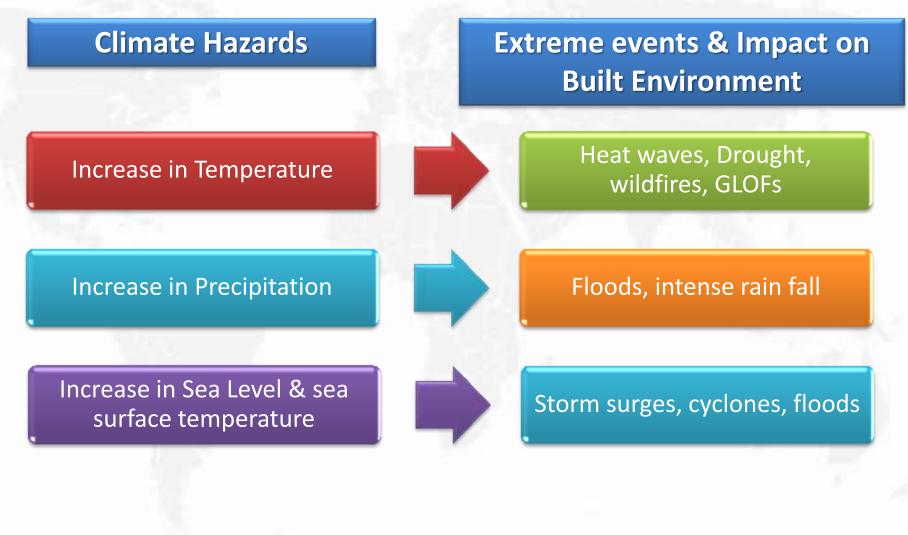
IPCC Climate Change 2014 Synthesis Report

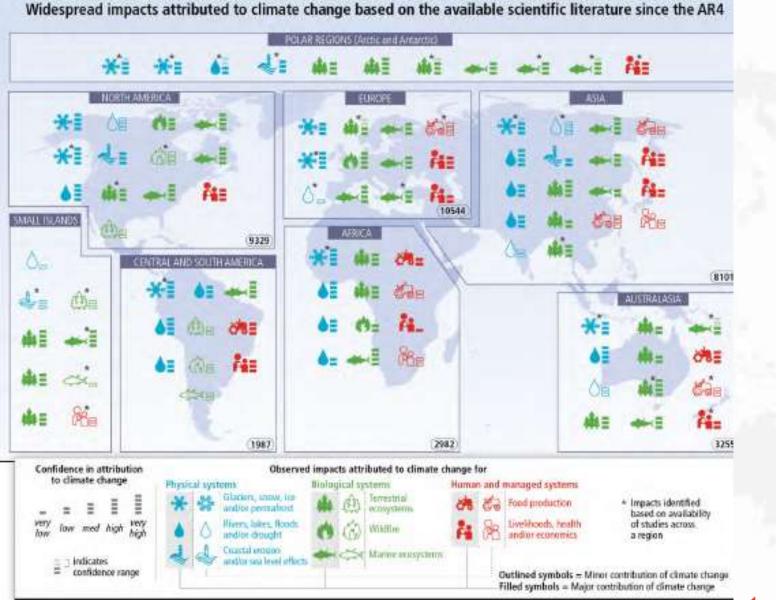


https://biocreativity.wordpress.com

Changes in many extreme weather and climate events have been observed since about 1950. Some of these changes have been linked to human influences, including :

- Decrease in cold temperature extremes
- Increase in warm temperature extremes
- Increase in extreme high sea levels and
- Increase in the number of heavy precipitation events in a number of regions.




IPCC Climate Change 2014 Synthesis Report

Impact of Climate Change on Built Environment

Source: IPCC Assessment Report 5

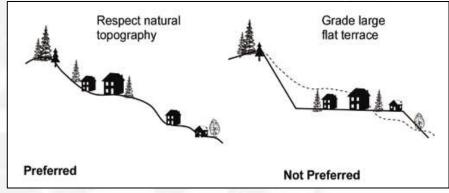
Coastal Systems and low lying areas

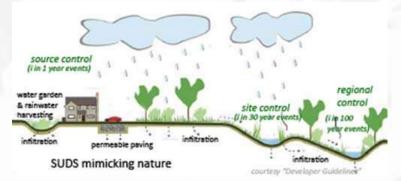
Coastal systems and low-lying areas are at risk from sea-level rise, which will continue for centuries even if the global mean temperature is stabilized.

Source: IPCC 5th Assessment Report

Defining Climate Resilient Housing

Climate Resilient Design Features make homes resilient to climate vulnerabilities, such that they maintain an acceptable level of functioning and structure.




Floods, GLOFs, Landslides & Heavy Precipitation

For Settlement level

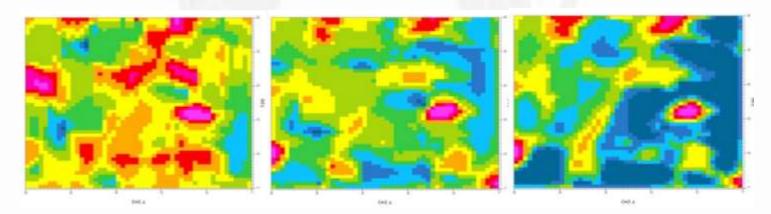
- Developments to adhere to natural site contours.
- Construction on natural drains to be avoided.
- Development to be planned in a manner to leave natural vegetation protected.
- Grading large flat terraces on hill side sites should not be allowed.
- Developments should integrate an effective storm water management system – infiltration trenches, retention ponds, downstream flood control measures.
- Reduce impervious paving
- Erosion and sedimentation control measures through swales, sedimentation pits, vegetation growth on exposed soils along with mulching.

(Source: Steep Slope Development Guidelines, City of Nanaimo)

http://sd.defra.gov.uk/2011/05/surface-water-management-and-future-water-supplies/)

Floods, GLOFs & Heavy Precipitation Building level

- Buildings with High Plinth.
- Raised floor level to prevent flood water entering inside the house.
- Basements for new construction should not be allowed in urban areas prone to flooding.
- Isolated RCC Foundations in hilly terrains with tie beams.
- Overhangs above openings.
- Homes to have attached toilets.
- Bitumen based damp proof course at plinth level and water proofing on roofs.



Increasing Temperatures & Heat Stress

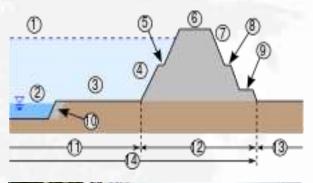
For settlements

 In urban areas, one of the reasons for increase in temperature is urban heat island effect. Thus, reduced impervious pavements, increase in vegetation and shaded as well as light coloured building surfaces help maintain cooler microclimate.

Increasing Temperatures & Heat Stress

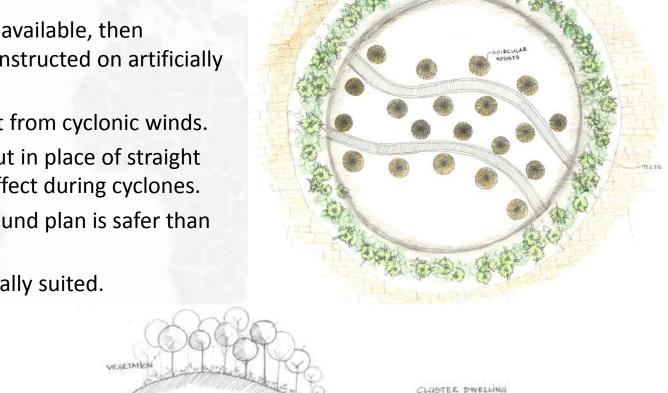
For New Construction

- Solar control strategies like shading, orientation and building morphology to reduce external heat gains and maintain comfortable indoor conditions.
- Increase in vegetation around the house.
- Increase in ventilation through optimization of window design and size.
- Cool roof/Roof Garden
- Use of thermal storage through building materials like local stone and stabilized earth blocks.



Cyclones, Floods & Storm Surges in Low lying coastal areas

- Deep Foundations Pile foundations for Large buildings and RCC Strip foundation for homes
- Buildings with High Plinth, preferably 6" above highest flood level mark.
- Raised floor level to prevent flood water entering inside the house. Building on stilts.
- Basements for new construction should not be allowed in urban areas prone to flooding.
- Anchoring between building components.
- In low lying coastal areas, developments should be considered on higher grounds, or ground should be raised artificially.
- Construction of embankments or dykes is key for low lying settlements near coastal areas.



http://en.wikipedia.org/wiki/Levee

Cyclones, Floods & Storm Surges in Low lying coastal areas

- If higher grounds are not available, then settlements should be constructed on artificially raised grounds.
- Tree plantation to protect from cyclonic winds.
- Adopt a non regular layout in place of straight rows to prevent tunnel effect during cyclones.
- Square, hexagonal and round plan is safer than long rectangular plan.
- Pyramid shape roof is ideally suited.

Retrofit of Existing Housing to add climate resilience

Floods & Heavy precipitation

- Water proofing on roof and plinth level (Grouting)
- Water proofing on walls
- Protecting openings with overhangs
- Storm water Drainage systems

Increase in temperature and Heat Stress

External insulation on the roof

Cyclone, storm surges

- Replacement of GI sheets in roof with composite boards anchored with the structure.
- Strengthening plinth and then caping with concrete.
- Tiling of walls for salinity resistance

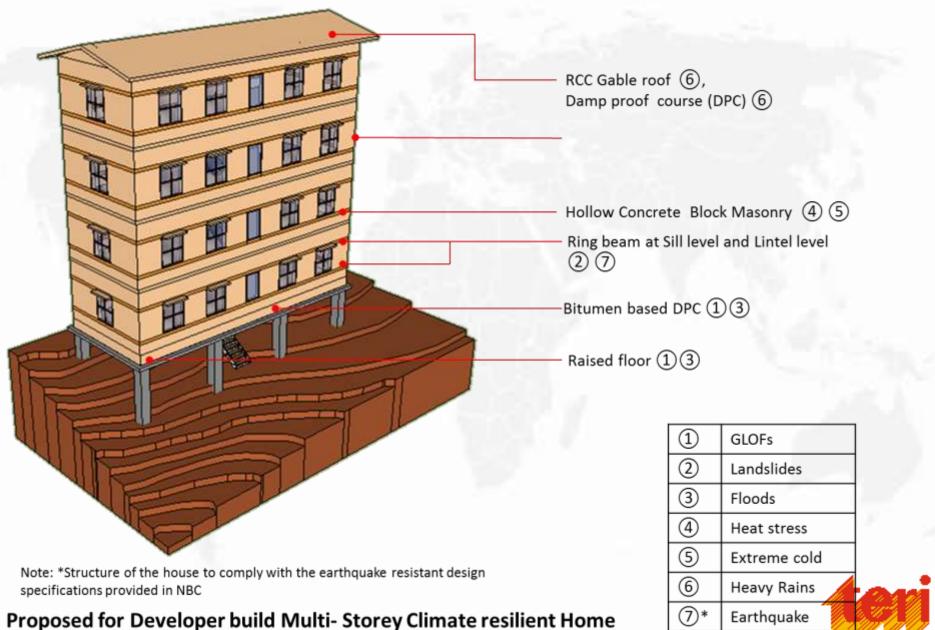
Alternate Technologies to make Climate Resilient Homes Affordable

Increase in construction cost after adding climate resilient features is 10-12%.

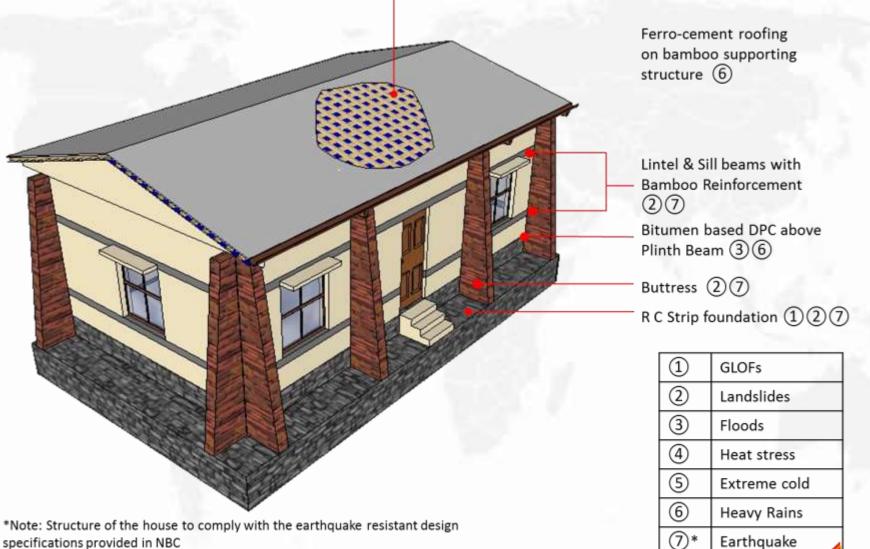
Alternate/Affordable Construction features for Multi residential Developer made Homes

Building Component	Conventional Practice	Alternative/ Affordable Construction	Cost Reduction (in %)
	Brick foundation	R C C Strip foundation	37
Foundation	Brick wall	Cavity wall	20
Wall			20
	R C C Slab	Filler slab	22-25
Roofing			
Opening frames	Teak/ Hard wood Door/ Window frames	Pre cast RCC frames for Door/ Window	30

Reference: Low cost Housing by Bhubaneswar LalShresta, 2007; Alternative building materials and technology Dissemination by Suresh V, 2002.

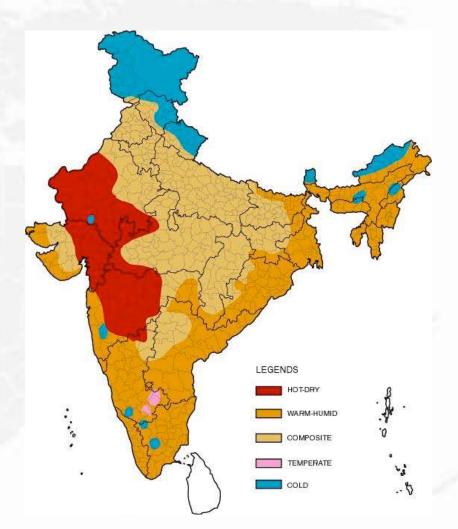

Alternate Technologies to make Climate Resilient Homes Affordable

Alternative/ Affordable construction features for self construction in rural locations


Building Component	Conventional Practice	Alternative/ Affordable Construction	Cost Reduction (in %)
Foundation	Brick work	Stone masonry	60-70%
Wall	Brick work	Hollow concrete block, Adobe	50%
Flooring	PCC	Stone Tile/ Brick tile Soling	30-40%
Roofing	C. G. I Sheets on Iron pipes	C. G. I Sheets on Bamboo	40%
Openings	Wooden Frames (Teak Wood)	Aluminium Frames	33%

House Design proposed for Multiple Hazard Locations

House Design proposed for Multiple Hazard Locations



specifications provided in NBC

Proposed for Self construction Climate resilient Home

Green Features that are Affordable for Integration in Housing projects

- Mapping of green homes
- Mapping of green and affordable homes
- Mapping of affordable green features in projects – both a habitat level and individual house scale.

Green Features Integrated in the Project

Site Level:

- Rainwater Harvesting
- Water Treatment & Reuse
- Waste Segregation & Treatment
- Preservation of existing resources Existing Trees, Contours, Top Soil Preservation
- Landscaping Native Species, Pervious Pavement
- Low Embodied Energy & Local Materials Usage
- Renewable Energy Based Outdoor Lighting

Building Level:

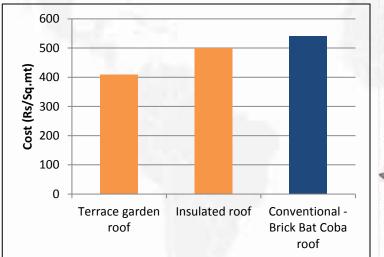
- Passive Designing Natural Lighting, Ventilation
- Climate Responsive Building design and envelope
- Solar Water Heating
- Efficient Water Fixtures
- Low Embodied Energy and usage of local materials
- Efficient Lighting

Preservation of existing resources- Tree & Top Soil Preservation

Parameters	In case study	Conventional Practice
Usage	During and after construction existing trees and top soil are preserved and protected.	Cutting existing vegetation; purchase, transportation and filling of top soil involved
Green Rationale:	Preserve eco system ,improves micro climatic conditions, Minimizes soil erosion & manage storm water drainage	Degrades the environment
Cost incurred	 Cost for top soil preservation: Rs 17/Cu.m Cost for Tree protection: 0 	Cost for purchase of top soil, processing : Rs 228/Cu.m
Affordability & Replicability	Preservation of existing Tree & Top Soil is affordable and replicable because its cheaper than conventional practice	CO & TERL for MoHURA Col

		Pervious Pavement
Parameters	In case study	Conventional Practice
Usage	87% of site area is softscaped using natural stones , mud concrete & VDF concrete across the site.	Majorly designed with impervious area
Green Rationale:	Controls Heat Island effect & Storm water runoff, controls storm water through percolation of water & recharging ground water.	Surge in heat island and disruption in ground water recharge due to impervious paving.
Cost incurred	Rs 295/sq.m for laying pervious paving using natural stones and grass	Rs 350/sq.m for laying complete impervious paving
Affordability & Replicability	Pervious paving is affordable and repline from homes and run-off used to rechar than conventional practice	

Pervious Paving for Vehicular Movement


Green Roof

Brick Waste

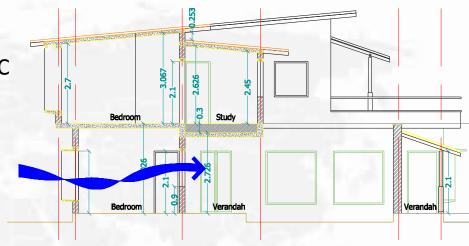
Insulated roof construction **Terrace Garden** legetation 225mm Earth + Vermicompost Fibre glass 50mm Pebbles 50mm water proof ips concrete 230mm existing RCC Lime Plaster

Terrace Garden Roof:

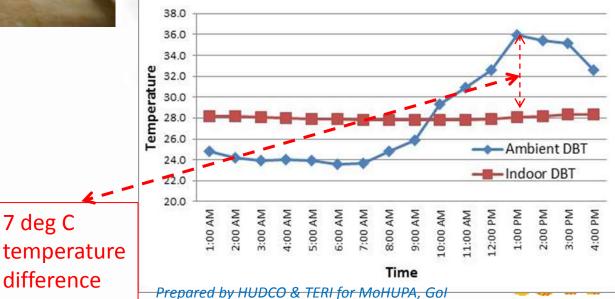
Earth + vermin compost + fiberglass mesh + cement + sand + grit + water proofing + RCC

Insulated Roof:

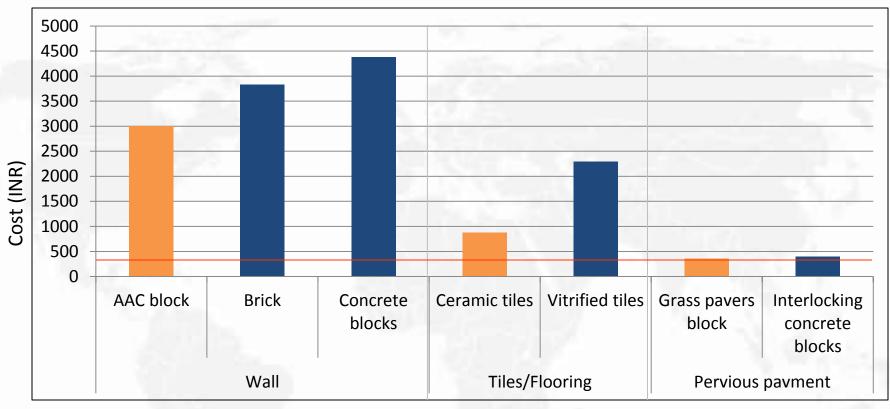
Waste brick + lime + sand + Waste Thermocol + RCC



Passive Design Features – Natural Ventilation


7 deg C

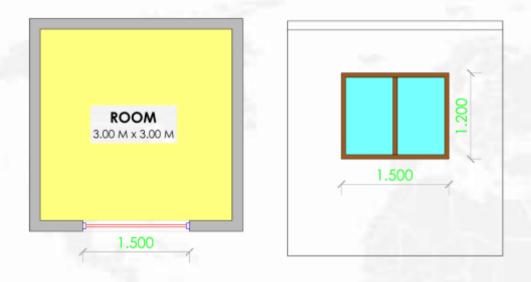
- Cross ventilation observed
- Thermal comfort measured acceptable by NBC ٠

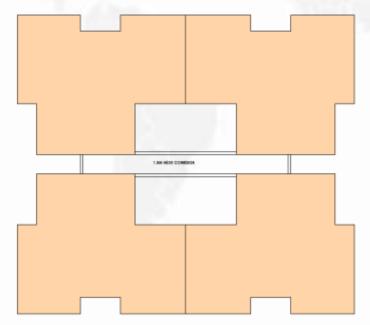


Comparision of internal and ambient temperature profile at malhar Foor prints House

Alternative Materials – Green + Low Cost

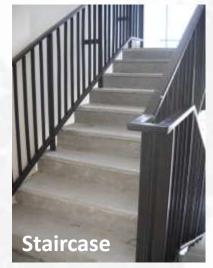
AAC Blocks:


- Improved thermal efficiency
- Fire resistant
- Minimizes the generation of solid waste during use
- Less embodied energy
- Light weight & thereby saves cost & energy in transportation & labor


Ceramic Tiles: Low embodied energy

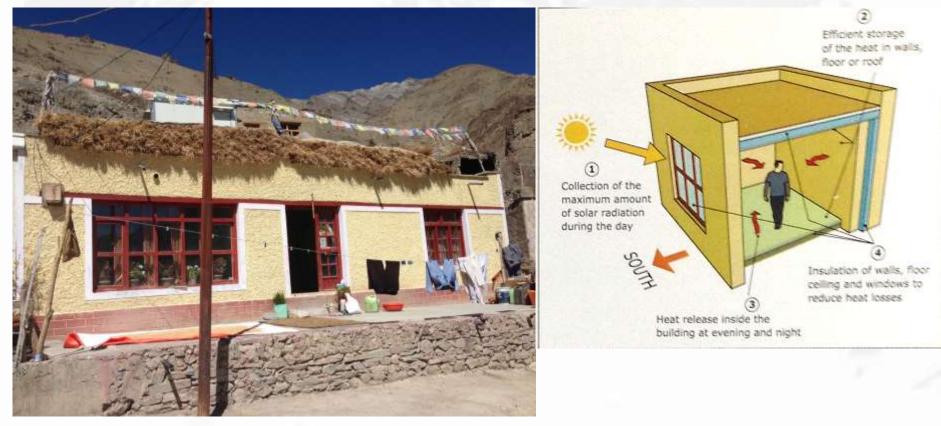
Prepared by HUDCO & TERI for MoHUPA, Gol

Key Affordable Features- Efficient Space Utilisation & Standardisation



- Window Area- Optimized, more than bye law requirement; reduces the load on artificial light, enhances ventilation
- Minimum & Standard Room Sizes- reduces material wastage & real estate cost
- Minimum Corridor width-reduces material wastage & real estate cost

Key Affordable Features- Alternative Materials, Construction Techniques



Passive Solar House Design in Cold Climate Zones

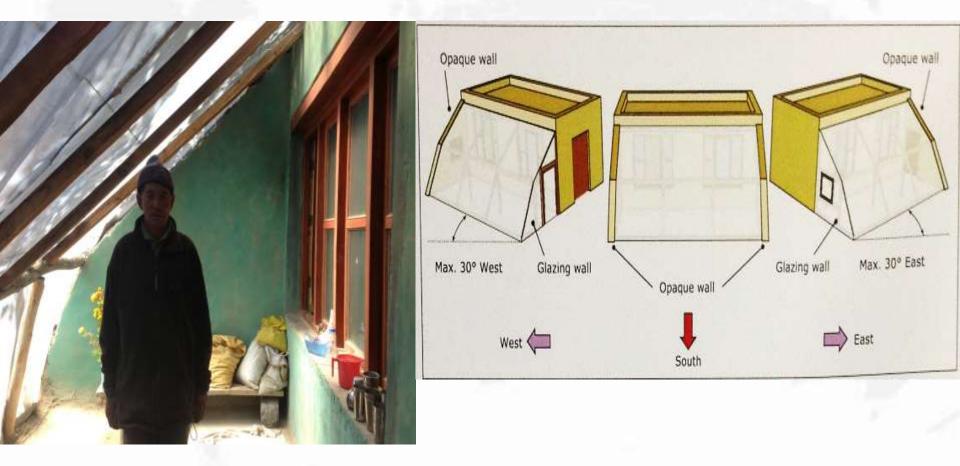
Direct gain (DG)

Construction cost = INR 958/m2 of wall area

Prepared by HUDCO & TERI for MoHUPA, Gol

Solar Wall (SW)

Construction cost = INR 1596/m2 of wall area



Attached Green House

Construction cost = INR 1277/m2 of wall area

Prepared by HUDCO & TERI for MoHUPA, Gol

Local low energy materials

- Sun dried mud bricks
- Yakzes
- Saw dust
- Wood
- Markalak clay

On site monitoring

Paramet ers	DG	SW	AGH
Inside tempera ture (°C)	23.4	19.9	21.1
Inside lux (Middle of room)	350	210	160
Outside tempera ture(°C)	17.9	17.9	17.9
Relative Humidit y (%) inside	26	20	20

Prepared by HUDCO & TERI for MoHUPA, Gol

Water Efficiency in Building water demand

and the second s		
Parameters	In case study	Conventional Practice
Usage	Low flow water fixtures in toilets & kitchen	High flow fixtures
Green Rationale:	Highly efficient & reduced demand with dual flush 3/6 lts/flush water close	Less efficient & higher water demand with single flush water closet of 15 lts/flush
Cost incurred	Rs 6500/unit	Rs 5000/unit
Affordability & Replicability	<i>Efficient water closet</i> is affordable and replicable as its pack back is less than 1 year in comparison to conventional practice	

Water Efficiency in Building water demand

Life cycle cost analysis

Parameters - water management	Water Closet with 3/6 litre/flush dual flush	Conventional Water Closet of 14 litre/flush
Cost/unit (Rs.)	6500	5000
Cost comparison (%)	23% higher	-
Annual Water consumption for 4 member family (litres)	19710	78840
Annual water consumption (%)	75% lower	-
Water	saving through tankers suppl	у
Water tanker capacity for each supply (litres)	6000 litres	
Cost of each tanker (Rs.)	Rs. 750/-	
Total tanker required to meet the annual water demand	3	13
Annual total cost of supplying water through tanker (Rs.)	2250/-	9750/-
Annual cost paid for tanker	75% lower	-
Water required annually through tanker	75% lower	-

Life Cycle Cost Analysis for Waste Water Treatment System & rain Water Harvesting in Housing Projects

Details	Litres	kilolitres	
total water demand (litres)	87000	87	daily
total water demand (litres)	31755000	31755	yearly
water from rain (litres)	5300000	5300	yearly
water from recycled water(litres)	2100000	21000	yearly
water from ground water (litres)	12700000	12700	yearly
each water tanker supply (litres)	6000	6	each tank
Cost of each tanker (Rupees) in bulk supply	500		Rs/tanker

Initial investment cost of each component for water supply such as rainwater harvesting, DEWATS system, ground water installation was taken into account.

Cost of each component	cost (Rupees)	In million
		rupees
Installation cost of Rain water harvesting	4100000	4.1
Installation cost of DEWATS	2900000	2.9
Installation cost of ground water installation with break up below	180000	0.18
bore well drilling cost with casing	40000	0.04
Pump and electrical cable	120000	0.12
electrical panel and wiring	20000	0.02
total cost initial investment- (A) (Rupees)	7180000	7.18

Maintenance cost of each of the above components, for ten years, were taken into consideration as depicted below:

maintenance cost for 10 years	cost (Rupees)	Period	Cost for Ten Years	In Million
			Rupees)	Rupees
cost of Rain water harvesting	1200	per annum	12000	0.12
cost of DEWATS	66000	Per annum	6,60,000	0.66
electrical Consumption/day of	22000	per month	2640000	2.64
ground water installation maintenance cost per	10000	Per annum	100000	0.1
year				
total maintenance cost (B)			2752000	2.752
Grand total A + B			Rs. 10592000	10.592

Cost of water supply through water tankers

Details	quantity	units	In Million Rupees
Each water tanker capacity	6000	each tank	
Cost of each tanker	500	Rs/tanker	
No. of tankers required	5293	per year	
Total cost (Rupees)	2646250	per year	
Total Cost for 10 years (Rupees)	Rs. 26462500		26.4625

The water management system with rainwater harvesting, DEWATS system, ground water installation saves up to 60% as against water supplied through tanker for a period of 10 years.

Renewable Energy Based Outdoor Lighting

	Stand-alone SPV-	1100
	LED	Sodium Vapour
Lamp Cost (Rs)	2,500	1,750
Battery Cost (Rs)	6,000	0
SPV Cost (Rs)	4,000	0
Pole (Rs)	4,000	4,000
Wiring & Installation (Rs)	3,500	2,500
Total Cost (Rs)	20,000	8,250
Wattage (W)	14	150
Consumption in kWh (for		
3 Years)	184	1971
Tarrif (Rs)	0	6
Total Operational Cost		
(Rs)	0	11826
Total Cost (Rs)	20,000	20,076
Payback	3 years	

Prepared by HUDCO & TERI for MoHUPA, Gol

Solar Based Hot Water Systems

Green Rationale: Reduces energy usage from grid and thereby natural fossils fuels

Cost Factor: Initial investment shall be high. Lifecycle cost shall be far lower

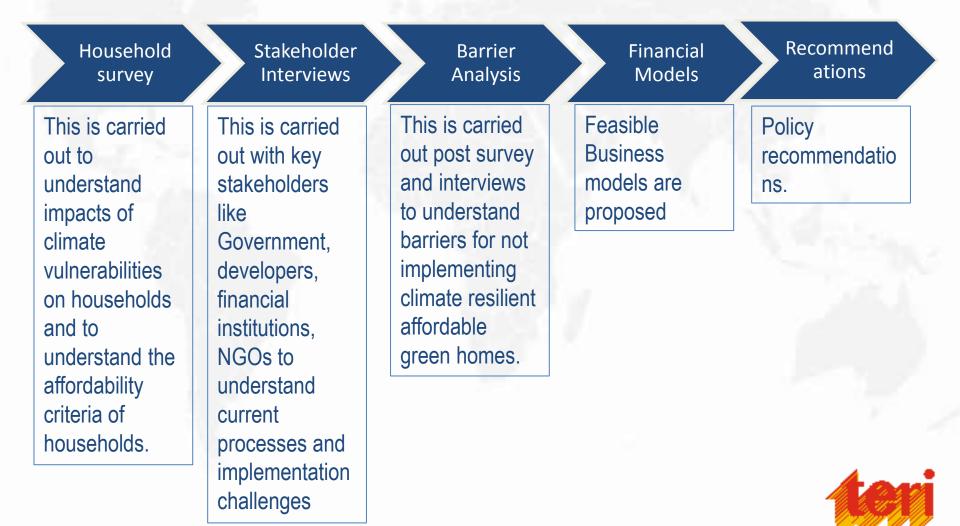
Total installation capacity = 2000 litres Cost of installation = 4 lakhs rupees Payback is 2 years approx.

The above cases are either Demonstration projects or voluntary projects. Usually in India and many developing countries Rehabilitation work is carried out after the climate hazard stuck. Example in October, 2014, Hud-Hud Cyclone on the coast of Andhra Pradesh affected 0.250Million people and 60,000 families, damaging 2250Kms of Road infrastructure...

Can we have Climate Resilient Infrastructure and Built Environment?

Barrier Analysis

- Missing policies to make climate resilient housing in climate vulnerable locations.
- Missing policies to make affordable homes green.
- Low Awareness on green initiatives and climate resilient features that need to be integrated in affordable housing.
- Missing Financial policies and incentives to promote Green and climate resilient housing in the climate vulnerable locations in India.
- No or limited incentives for borrowers from Government or financial institutions, for those, who are building green & climate resilient homes.
- Green building features & climate resilient features are not yet integrated in the Schedule of Rates developed by most of the States.



Objective

- 1. To assess the market potential for climate resilient low cost housing
- 2. To design a feasible business model including developing a low cost housing insurance framework and identification of potential implementing partners for pilot interventions

Methodology/ Approach

Policy Recommendations

- 1. Policies by Government to mainstream green and climate resilient affordable homes.
- 2. Policies for Financial Institutions to lend to climate resilient green affordable homes.
- Integration of green features and climate resilient features in Schedule of Rates and Building Bye Laws.

Thank You

minnim@teri.res.in

