Building Energy Efficiency



Asahi India Glass Limited

# **Energy Consumption Globally**

| Consumption/year |       |  |  |  |  |
|------------------|-------|--|--|--|--|
| Rank Country     |       |  |  |  |  |
| 1                | US    |  |  |  |  |
| 2                | China |  |  |  |  |
| 3                | Japan |  |  |  |  |
| 4 Russia         |       |  |  |  |  |
| 5                | India |  |  |  |  |

Buildings represents one of the significant energyconsuming sector in the economy, with over one-third of all final energy and half of global electricity consumed there. As a result, they are also responsible for approximately one-third of global carbon emissions. With an expected population increase of 2.5 billion people by 2050, and given improvements in economic development and living standards, energy use in the buildings sector is set to rise sharply, placing additional pressure on the energy system.

#### Sectorwise Consumption



# **Building Energy Consumption**

| Daily consumption per<br>capita |            |  |  |  |  |  |
|---------------------------------|------------|--|--|--|--|--|
| kWh/capita Country              |            |  |  |  |  |  |
| 51.5                            | US         |  |  |  |  |  |
| 39.25                           | China      |  |  |  |  |  |
| 33.54                           | Japan      |  |  |  |  |  |
| 28.39                           | Russia     |  |  |  |  |  |
| 2.02                            | India (23) |  |  |  |  |  |

Per-Capita Consumption (kWh)



#### Power consumption break up in Typical office building



- 60% Air Conditioning
- 10% Lighting
- 18% Computers & UPS
- 7% Server Room
- 5% Others

# **Causal effect in Buildings**

- ✓ Building typology
- ✓ Location.
- ✓ Landscape.
- $\checkmark$  Orientation.
- ✓ Shading.
- ✓ Façade Material selection.
- $\checkmark$  Insulation .
- ✓ Internal layout.
- The positioning of openings to allow the penetration of solar radiation, visible light and for ventilation
- ✓ Active designing

#### Heat Gain/loss through Facades



## **Phenomenal façades**





"Façades are to a building what first impressions are to people"

"A building's character is determined by its architectural façade and is therefore a crucial design and construction element responsible for setting the 'tone' of a building."

## **Glazing selection Parameters**

| Parameters                | Importance                                                     |
|---------------------------|----------------------------------------------------------------|
| Aesthetic                 | Enhances look of the building                                  |
| Energy<br>Efficiency      | It is a combination of<br>lighting & cooling energy<br>saving  |
| Improved Day-<br>lighting | Reduces artificial lighting<br>requirement by using<br>glazing |
| Glare<br>Reduction        | It can defeat the purpose of using glass                       |

#### **Glazing Cost and Performance**



| Glass | Colour | VLT | IR | ER | SF | SC | U value | RHG    |
|-------|--------|-----|----|----|----|----|---------|--------|
| Α     | Shade  | %   | %  | %  | %  |    | W/m2    | W/m2.k |

High performance glasses are innovative products which are expensive but cost beneficial as the amount of heat gain is less and hence more energy saving.

## **Real-Life Case Studies**



### How expensive Glazing is cost beneficial?

#### Case 1: Office building, Noida WWR > 60%

![](_page_7_Picture_2.jpeg)

| Туре      | Electricity<br>consumption<br>due to solar<br>gains<br>(KWH) | Electricity<br>cost<br>Annual<br>(Rs) | Savings<br>Annual<br>(Rs) | Glazing<br>Cost<br>(Rs) | Extra<br>payment<br>for HP<br>glass<br>(Rs) | Payback<br>years |
|-----------|--------------------------------------------------------------|---------------------------------------|---------------------------|-------------------------|---------------------------------------------|------------------|
| Clear SGU | 7924493                                                      | 55471453                              |                           | 18000000                |                                             |                  |
| Blue      |                                                              |                                       |                           |                         |                                             |                  |
| Vision    | 1068413                                                      | 7478894                               | 47992560                  | 6900000                 | 51000000                                    | 1.1              |
| Spring    |                                                              |                                       |                           |                         |                                             |                  |
| SGU       | 1661261                                                      | 11628826                              | 43842627                  | 33000000                | 15000000                                    | 0.3              |

![](_page_7_Figure_4.jpeg)

![](_page_7_Figure_5.jpeg)

![](_page_7_Figure_6.jpeg)

#### **Case 2** Commercial Building, Bangalore WWR = 60%

| Туре             | Electricity cost | Savings     | money   |  |
|------------------|------------------|-------------|---------|--|
|                  | Annual (Rs)      | Annual (Rs) | %saving |  |
| SGU              |                  |             |         |  |
| Base case - ECBC | 23091954.1       |             |         |  |
|                  | 18365575.2       | 4726378.9   | 20.5    |  |
| Solar control    | 18229707.1       | 4862247.0   | 21.1    |  |
| Low E glass      | 17901711.5       | 5190242.6   | 22.5    |  |
|                  | 17345102.2       | 5746851.8   | 24.9    |  |

![](_page_8_Picture_2.jpeg)

![](_page_8_Figure_3.jpeg)

Using low E glazing reduces the cooling loads of the building and hence total Electricity consumption reduces by 20 - 25%.

## **Innovative Techniques**

![](_page_9_Picture_1.jpeg)

#### **Case 1: Double skin facade**

#### A school in Mumbai

| Tuno                          | Total Electricity<br>Consumption | Electricity Cost     | Savings                  |  |  |  |  |  |
|-------------------------------|----------------------------------|----------------------|--------------------------|--|--|--|--|--|
| туре                          | ( Mwh)                           | Annual<br>(in lakhs) | Annual<br>(in thousands) |  |  |  |  |  |
| Non - ventilated cavity       |                                  |                      |                          |  |  |  |  |  |
| Base case - 12mm AIS<br>Clear | 871                              | 52                   |                          |  |  |  |  |  |
| 12mm Ecosense Spring          | 884                              | 53                   | -78.88                   |  |  |  |  |  |
| 12 mm Ecosense Dawn           | 876                              | 52                   | -27.80                   |  |  |  |  |  |
|                               | Ventilated cavity                |                      |                          |  |  |  |  |  |
| 12mm Ecosense Dawn            | 718                              | 43                   | 921.07                   |  |  |  |  |  |

![](_page_9_Picture_5.jpeg)

Double skin facade – Combination of perforated aluminum sheet & glazing

![](_page_9_Picture_7.jpeg)

The non-solar heat gets trapped between the perforated aluminium façade and inside skin when using a low-E glass.

Non-solar heat gain is the reason for increase in heat gains.

#### **Case 2: Inclined Facade**

![](_page_10_Picture_1.jpeg)

#### Daylight Analysis:

For a corporate building in Mumbai, daylight analysis was done for Clear Glass (VLT = 78%) and the high performance glass (VLT = 21%). Both the glasses performed identically in terms of achieving the optimal lux levels. Clear Glass, in fact, caused glare in certain portions of the building.

![](_page_10_Picture_4.jpeg)

Pink region shows area which will have glare and Grey indicates sub-optimal lighting In 2nd case, we can see reduction in glare area without reducing optimum lux level.

![](_page_10_Figure_6.jpeg)

- Daylight analysis is important as it prevents overdesigning of the building and at the same time optimizes VLT requirement.
- In the case mentioned, we can use high performance glass which will reduce cooling load without compromising on lighting load

#### **Case 3: Climate Analysis**

![](_page_11_Picture_1.jpeg)

#### **Office Building in Bangalore**

Climatic condition of the location is important to select type of glazing as different weather conditions have different impact on glass.

| Calcula-<br>tions                                    | Total<br>(KWh) | Cost of<br>Electr-<br>icity | Savings<br>(Kwh)/<br>Yr | Savings<br>(Rs.) /<br>Yr | Cost of<br>Glass | Cooling<br>design<br>(Kwh) | Cooling<br>Load<br>In TR | Units                | Cost     | Saving  | Extra<br>Paid for<br>Glass |
|------------------------------------------------------|----------------|-----------------------------|-------------------------|--------------------------|------------------|----------------------------|--------------------------|----------------------|----------|---------|----------------------------|
| base case<br>clear Glass<br>SGU                      | 7032860        | 42197163                    |                         |                          | 2750000          | 3052                       | 862                      | 300tr*3              | 21375000 |         |                            |
| Enhance<br>Pine SGU                                  | 7244067        | 43464400                    | -211206                 | -1267237                 | 5500000          | 2960                       | 836                      | 300tr*3              | 21375000 | 0.00    | 2750000                    |
| Enhance<br>Reef SGU                                  | 7034942        | 42209653                    | -2082                   | -12491                   | 5500000          | 2905                       | 820                      | 300tr*3              | 21375000 | 0.00    | 2750000                    |
| Proposed<br>Glass                                    | 7099559        | 40597354                    | -66699                  | -400191                  | 5750000          | 2800                       | 790                      | 300tr*2<br>+ 200tr*1 | 19000000 | 2375000 | 3000000                    |
| Proposed<br>Glass with<br>lighting<br>controls       | 7320208        | 43921247                    | -287347                 | -1724085                 | 5750000          | 2876                       | 812                      | 300tr*2<br>+ 200tr*1 | 20187500 | 1187500 | 3000000                    |
| Proposed<br>Glass<br>without<br>lighting<br>controls | 7640898        | 45845389                    | -608038                 | -3648227                 | 4250000          | 2885                       | 814                      | 300tr*2<br>+ 200tr*1 | 20187500 | 1187500 | 1500000                    |

![](_page_11_Picture_5.jpeg)

Glass with SF of 37 & U-Val – 5.7 was as efficient as a glass with SF of 25 & U-Val – 3.7. The building design & the local weather conditions meant that you can relax the glass values and still be energy efficient.

#### **Case 4: Orientation**

![](_page_12_Picture_1.jpeg)

A commercial complex at Navi Mumbai with glazing on the Eastern and Southern façade showed that Clear Glass performed as good as "high-performing glasses" and the choice came down to aesthetics.

#### **Shadow Analysis:**

![](_page_12_Picture_4.jpeg)

![](_page_12_Picture_5.jpeg)

Right orientation reduces the demand for high performance parameters.

#### **Case 5: Site Surroundings**

![](_page_13_Picture_1.jpeg)

#### **Shadow Analysis:**

Blue indicates the sun's path in summer and Red indicates the sun's path in winter.

![](_page_13_Figure_4.jpeg)

Shadow Analysis suggests the optimum requirement of Glazing performance parameter to be used.

# **Things to Note**

![](_page_14_Picture_1.jpeg)

- The same fenestration behaves differently depending on the specific design.
- It should not be assumed that products with Low U-value and SHGC are the best and universal solution.
- Direct radiation falling on the windows should be minimized.
- For shaded windows, products with lower U-values perform better.
- For windows receiving high amount of solar radiation, products with low SHGC would perform better.
- Hence glazing should be selected after thoroughly considering the design.

![](_page_14_Picture_8.jpeg)

## **Trends in Glass**

## 1) Façade Retrofitting for better energy performance:

"ATTOCH" an Ecoglass product that is ideal for energy-saving window renovations

![](_page_15_Picture_3.jpeg)

#### Facts and Figures :

- Installation takes only 30 to 60 minutes per window.
- The existing glass continues to be used, and so does not require disposal.

#### How is it installed?

This product converts an existing windowpane into Ecoglass simply by applying Low-E glass to the inside of the window.

![](_page_15_Picture_9.jpeg)

Before installation

![](_page_15_Picture_11.jpeg)

After installation

# **Energy Savings** :

![](_page_16_Figure_1.jpeg)

This Innovative technique of Retrofitting helps to reduce air-conditioning energy use by about 30% a year

## 2) Smart Glazing:

Smart glazing refers to electrically switchable glass or glazing which changes light transmission properties when voltage is applied. Application :

#### 1) Electro-chromic glass

![](_page_17_Figure_3.jpeg)

#### 3) Liquid crystal device

![](_page_17_Figure_5.jpeg)

#### 2) Suspended particle device

4) Micro Blinds

![](_page_17_Picture_9.jpeg)

- Windows
- Doors
- Sunroofs

![](_page_17_Picture_13.jpeg)

![](_page_17_Picture_14.jpeg)

#### Benefits :

- Energy Efficiency
- Occupant wellbeing
- Security

#### **3)Building Integrated Photo Voltaic**

![](_page_18_Picture_1.jpeg)

solar panels that follow the sun at the same time shading the inside of the building to reduce air conditioning.

#### 5) Glass as structural material:

# Glass columns

#### **4)Light Shelves:**

![](_page_18_Figure_6.jpeg)

## Conclusion

![](_page_19_Picture_1.jpeg)

#### "That's one small step for (a) man, one giant leap for mankind." - Neil Armstrong

![](_page_19_Picture_3.jpeg)

![](_page_20_Picture_0.jpeg)

## Thank you for your time