Landscape Design - TRANSCENDING THE NOTION OF A GARDEN

6th GRIHA Regional Conference on 'Accelerating Sustainability in Built Environment'
It is critical to understand that unlike *architectural guidelines*, the approach to sustainable landscapes cannot follow specific formulae or implementation rules; it is determined by the **SCALE OF OPERATION**.
1. SOFT CONSTRUCTION TECHNIQUES
2. MATERIAL PALLETTE
3. ENHANCING BIODIVERSITY AND INDIGENOUS SPECIES
Absorbent and reflective materials

Groundcover and/or turf also have a cooling effect from evapo transpiration (the loss of water from the soil by evaporation and by the transpiration of the plants growing therein). The temperature above a groundcover will be 10 to 15 degrees cooler than above a heat absorbent material such as asphalt or a reflective material such as light colored gravel or rock. A heat absorbent material like asphalt will also continue to radiate heat after the sun has set. It is best to either minimize the use of heat absorbent and reflective materials near a house and/or shade them from any direct sun.

Total infiltration

This system allows all water falling onto the pavement to infiltrate down through the joints or voids between the blocks, passing through the constructed layers below and eventually into the sub-grade. Some retention of the water will occur temporarily in the sub-base layer allowing for initial storage before it eventually passes through. This is sometimes known as Zero Discharge, as no additional water from the new development is discharged into traditional drainage systems, therefore the need for pipes and gulleys are eliminated resulting in cost savings.

Partial infiltration

This system allows some water to infiltrate through the pavement, as with total infiltration, but a series of perforated pipes or pin-drains is also introduced at the formation level to allow the remaining water to be drained to other systems such as sewers, swales or watercourses. This system can be used in situations where the existing sub-grade may not be capable of absorbing all the water. This system can, therefore, prevent the existing soil from losing its stability.

No infiltration

This system allows for the complete capture of the water using an impermeable, flexible membrane placed on top of the formation level. It is used in situations where the existing sub-grade has a low permeability or low strength and would therefore be damaged by the introduction of additional water. A series of perforated pipes or pin-drains is placed on top of the impermeable membrane to transmit the water to sewers, watercourses or treatment systems.

This system is particularly suitable for contaminated sites, as it prevents pollutants from being washed further down into the sub-grade, where they may eventually be washed into existing natural water systems. Another advantage is storage capability, as stored water can eventually be released into existing systems at times of low flow by mechanical means, preventing overloading at times of heavy rainfall.
4. MINIMIZING PAVED SURFACES IN THE LANDSCAPE
5. DESIGNING SPACES BASED ON SOLAR ORIENTATION
6. INTEGRATED VEGETATED / SHADED STRUCTURES
7. STREETSCAPE
8. SHADING ROOFTOPS
9. VEGETATED ROOFS
• To minimize heat gain, the roofs are treated as either black (SPV) or green (vegetated).

• Shading the vegetated roof space with SPV over raised framework creates shade and increases health of the vegetation.

• Evaporative cooling of under surface of SPV due to presence of vegetation below increases its efficiency.

• Water from washing the SPV directed along drip lines to irrigate vegetation below, further increasing water efficiency.
10. FAÇADE ARTICULATION

6th GRIHA Regional Conference on ‘Accelerating Sustainability in Built Environment’

MOHAN S RAO
Daylighting and Shading interventions

- To reduce glare and increase penetration of daylight into the building interiors, light shelves and extended roof slabs are used.
- They provide shade from the summer sun and allow penetration of winter sun.
- The elements reflect and disperse sunlight to maximize penetration of diffused sunlight.
- To ensure all building interiors are day-lit, the maximum width of buildings is limited to 23 m.
6th GRIHA Regional Conference on 'Accelerating Sustainability in Built Environment'
11. INTEGRATING SITE SERVICES

6th GRIHA Regional Conference on ‘Accelerating Sustainability in Built Environment’
12. INTEGRATING THE WATER CYCLE
13. REPLACE PIPED SERVICES WITH NATURAL SYSTEMS
TRANSCEND BEYOND DESIGN AND THE SITE

TOWARDS A MORE HOLISTIC, ECOSYSTEM-BASED APPROACH

6th GRIHA Regional Conference on ‘Accelerating Sustainability in Built Environment’

MOHAN S RAO
ACHIEVING PERCENTAGE OF MANDATORY OPEN SPACE

CURRENT PRACTICE

Built form scattered across the entire site.

For an equivalent density, high rise typology creates sharp fragmentation of the site and site systems, rendering them sterile for any function save the decorative.

While the percentage of open space may remain similar, its utility is severely limited due to fragmentation through buildings, access for services and circulation.

RECOMMENDED PRACTICE

Consolidation of built form leaves precious natural landscape in its pristine state.

Opportunities for future expansion / intervention without compromising continued functioning of facility are immense.

Creative potential of the open space for productive functions – be they ecology, nutrition, energy or recreation driven are highly valuable.

High-rise developments tend to create fragmented open spaces due to service and access needs.

Controlled low-rise, high density massing allows for large, consolidated open spaces.

Such a typology also allows for modular expansion possibilities.
The built often occupies only fraction of a site; especially in large scale developments.
The city nearest to the site is Chikballapur at about 20 km distance. The northern part of Bangalore city comes within 50 Km distance from the site. The national highway #7 is adjacent to the site and several state highways run at close proximity to the site. Within a 20 km radius, the site boasts of state forest land and several seasonal and perennial lakes.
Regional Character

Climate:
The region falls in the Eastern dry agro climatic zone. It experiences semi-arid climate, characterized by typical monsoon tropical weather with hot summers and mild winters. September and October are the wettest months with over 100 mm monthly rainfall. April is generally the hottest month and December is the coolest month of the year. During summer is Max temperature is 32°C & Min temperature is 24°C. In winter, Max temperature is 27°C & Min temperature is 16°C. The average annual rainfall is 773 mm in the region. Annual Rainfall: 650 to 847.3 mm

Physiography:
Pediment, valley, laterite mounds, rolling land
Landform: South Deccan plateau
Situated in the Southern Deccan plateau, the topography is a rolling terrain at an elevation 900m above msl, as part of the Pediment of the Nandi hills.

Hydrology:
Surface water: There are no perennial rivers in the region. The region is dotted with several ancient irrigation tanks some of which are in a degraded condition. The drainage pattern is highly dendritic in nature. The region is the basin of river North Pinakani, which originates from Nandi hills.

Land use:
Major part of the region is cultivated land, with small size rural settlement dotting the landscape. Only in the hilly terrain there are few patches of forest left.
The site sits amidst a rich agricultural belt with a rich tradition of horticulture. Numerous lakes dot the landscape constructed over centuries to cater to both irrigation and domestic needs; the general slope of the land is northward and the lakes form an intricate system of valleys and channels.
The general slope of the site is northeast, towards where is the largest water body in the proximity. Towards north west is a lone spur belonging to the range of Nandi hills. An excavated granite mine lies towards the south-east direction. Towards the west are two villages with population more than 10,000. Smaller settlements are spread along the roads and highway, mostly consisting of workers on agricultural fields encircling the site from all sides.
The woody species that are recorded from the 30m x 30m quadrat in the climax stage accounted for 37 species of tree canopy and storey level. The dominant species in the region under climax are *Hardwickia binata*, *Anogeissus latifolia*, *Chloroxylon swietenia*, *Albizia Amara*. But hardly these species can be spotted due to the degradation. The vegetation stratum is composed of Tree stratum (about 10 m high), Undergrowth of bushy shrubs and Graminaceous ground cover.

These degradation stages are the result of abusive and continuous exploitation of wood which has practically removed the tree stratum. The resulting increase in dryness at the level of the undergrowth and overgrazing favour the growth of thorny species. Among the most common species may be cited:

- *Acacia latronum*
- *Albizia amara*
- *Anogeissus latifolia* (shrub form)
- *Cassia auriculata*
- *Chloroxylon swietenia*
- *Cymbopogon martini*
- *Dodonaea viscosa*
- *Euphorbia antiquorum*
- *Isora arborea*
- *Lantana camara*
- *Maytenus emarginata*
- *Ziziphus oenopia*

Under intense biotic pressure, these dense thickets are reduced to discontinuous thickets whose shrubs are separated by large barren areas. In the ultimate stage, only a few shrubs which are inedible for animals are left on the denuded sites.

Bushy growth. It is very open formed of;
- *Cassia auriculata*
- *Dichrostachys cinerea*
- *Dodonaea viscosa*
- *Isora arborea*
- *Maytenus emarginata*
- *Mundulea sericea*
- *Xeromphalina spinosa*
- *Ziziphus xylapyrus*

Climbers;
- *Abrus precatorius*
- *Acacia pennata*
- *Butea superba*
- *Calycanthus floribundus*
- *Ziziphus oenopia*

Herbaceous;
- *Heteropogon contortus*
- *Cymbopogon species*
- *Aristida species*
- *Eragrostis species*

The abandoned patches of land are immediately covered with pioneering species of grasses.

Some of the species identified are:

- *Allotropis cimicina*
- *Arundinella pumila*
- *Dactylostemon aegyptium*
- *Dichanthium annulatum*
- *Elesine canareana*
- *Melinis repens*
- *Oryza sativa*
- *Pennisetum glaucum*
- *Pennisetum orientale*
- *Perois indica*
- *Phragmites karka*
- *Saccharum officinarum*
- *Sorghum bicolor*
- *Zea mays*
NOTE: All the following analysis diagrams prepared as part of this document, is based on the current available survey plan. All missing data features that have not been documented in this plan need to be additionally integrated in the final survey plan drawing.

EXISTING FEATURES

- MINOR CONTOUR @ 1M INTERVAL
- MAJOR CONTOUR @ 10M INTERVAL
- BUND FORMATION DUE TO AGRICULTURAL PRACTICES
- ROCKY OUTCROPS
- WATER FEATURES ON SITE
- TREE PLANTATION AND VEGETATION
- NATIONAL HIGHWAY 7

TOTAL SITE AREA: 244.50 Acres

13’ 37” E; 77’48” N
EXISTING CONDITIONS

The site lies on a gently sloping terrain with a 30 metre difference in gradual levels from the northern edge of the site till the highest point that lies at the centre of the site and then further slopes down towards the southern edge. The two high ridge points of the site lies on the Eastern and Western edges of the site, from where it slopes down towards the National Highway on the west and towards the valley on the east.

Though the site has a 30 metre elevation difference within it, most of the site has a fairly gentle slope with steep slopes almost non-existent. The presence of the two major ridge points on the East and the Western edges with the saddle in the centre allows multiple vantage points within the site with fairly distinct landscape terrains.
SOIL PROFILE

Red loamy soil: fertile soil, good for agriculture when tilled.

Red sandy soil: found near the ridges with vegetation

Sandy soil: found over water channels, minimal vegetation

Gravelly soil: found on ridges, well drained. Encourages certain species of grass and groundcover

Rocky outcrop: scattered throughout the site, well drained and hosts a few pioneer species of vegetation

6th GRIHA Regional Conference on ‘Accelerating Sustainability in Built Environment’

MOHAN S RAO
SOIL MAPPING

SOIL TYPOLOGY A
A Yellow sandy gravel soil: Highly degraded due to erosion and no vegetation cover. Excessively drained.

SOIL TYPOLOGY B
B Sandy soil: Associated with rocky outcrops; shallow, somewhat excessively drained, gravelly clay soil on ridge, severely eroded.

SOIL TYPOLOGY C
C Sandy clay soil: Associated with; shallow, somewhat excessively drained, gravelly clay soil on ridge, severely eroded.

SOIL TYPOLOGY D
D Clayey gravel soil: Found on ridges, well drained. Encourage certain species of grass and ground-cover.

SOIL TYPOLOGY E
E Red sandy loam soil: Found over water channels in the form of sandy deposits due to sedimentation.

SOIL TYPOLOGY F
F Red loam soil: Fertile soil with good moisture availability and organic matter in it.

NATIONAL HIGHWAY 07

AREA DISTRIBUTION - SOIL TYPOLOGY

EXISTING CONDITIONS

Being a semi-arid area the district is drought prone. The soil is classified as Ustic (deficient in water). The soil is rich in P2O5 with composition of Lime (0.1-0.8 %), Nitrogen (0.1 %) and Fe & Al (30-40%). The ridges of the rolling terrain is covered by gravelly loam to clayey textured soil and in the valleys the soil is deep, poorly drained, sandy and calcareous in nature.
Geology

Archean complex / Peninsular gneiss

Oldest geological formation covering around 60% of the state. They constitute unfossiliferous, crystalline, contrasted and faulted rocks.

The chief rock formation is granite which is intruded by dykes.

Hydrogeology

Major water bearing formation are Weathered and fractured granite rocks. Fractures or lineaments occupy well defined structural valleys.

The occurrence and movement of groundwater is controlled by weathered zone and fractures and fissures that exist in hard rocks in the phreatic, semi-confined to confined conditions.
GEO ELECTRIC STATION POINTS AND DEPTH WEAVING

Based on the hydrogeological data shared, geo station points are translated with depths as per the assigned values. The value of the silt sand layer, that is most crucial from the Master Planning perspective for this region is only evaluated.

To understand the sectional variation of the silt sand lithology layer, the depths of each of the geo station points are interconnected or weaved along the grid. This reflects a variation in profile across the different segments of the site profile.

SILT SAND LITHOLOGY SURFACE FORMATION

Though the sectional variation along one grid generated the necessary variation, we used the information as a parameter for sustainable development especially from the water management perspective for this region. It was important to build the entire profile of the lithology layer for the entire site.

Based on the sectional variations of each grid, the values were interpolated between each consecutive grid to arrive at the profile of this lithology that provided the varying morphological depths of the lithology layer.

SILT SAND LITHOLOGY CONTOUR PROFILE AND DISTRIBUTION

The next stage of analysis based on the surface formed, was to evaluate the distribution of the depth of the silt sand lithology layer across the entire site surface and not just geo station points as had been determined in the survey.

This was necessary to interpret the lithology layer as a tool to determine land use, and the Master Plan structure based on its distribution of depth as assigned from the generated contour profile. The distribution was categorized into 5 categories based on the range between its maximum and minimum depths. This revealed that depths along the centre are comparatively lower than its edges and the average depth ranges between -0.90 m to -0.60 m that spans the maximum area on site.

DISTRIBUTION OF SILT SAND LITHOLOGY LAYER ON SITE

<table>
<thead>
<tr>
<th>Layer</th>
<th>Depth Range</th>
<th>Percentage</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>-15.0 M to -12.0 M</td>
<td>02.8%</td>
<td>16795 sqm</td>
</tr>
<tr>
<td>Layer 2</td>
<td>-12.0 M to -9.0 M</td>
<td>26.7%</td>
<td>16254 sqm</td>
</tr>
<tr>
<td>Layer 3</td>
<td>-9.0 M to -6.0 M</td>
<td>46.1%</td>
<td>280066 sqm</td>
</tr>
<tr>
<td>Layer 4</td>
<td>-6.0 M to -3.0 M</td>
<td>24.3%</td>
<td>147685 sqm</td>
</tr>
<tr>
<td>Layer 5</td>
<td>-3.0 M to 0.0 M</td>
<td>0.2%</td>
<td>1209 sqm</td>
</tr>
</tbody>
</table>
MICRO WATERSHED MAPPING

WATERSHED LEGEND

WATERSHED FLAT AREA

WATERSHED DEPRESSION AREAS

NATIONAL HIGHWAY 07

EXISTING MUD ROAD APPROACH

WATERSHED: n an area or ridge of land that separates waters flowing to different rivers, basins, or seas.

EXISTING CONDITIONS

Based on the contour profile of the land, the diagram maps the various micro watershed patterns that are formed on site. The micro watershed patterns formed on site are largely due to the local level ground conditions comprising of rocky outcrops, bund formation on site due to past agricultural activity and large loose boulders. These micro watersheds form an integral part of the major watershed pattern on site that eventually drain the surface water through the valleys.

The micro watershed pattern identified on site are categorized as FLAT AREA WATERSHEDS - these areas receive the water and then drain into either another flat area eventually leading up to the depression areas - DEPRESSION AREAS - these zones in the watershed are potential harvesting zones on site
EXISTING CONDITIONS

Understanding the Micro Watershed pattern formation, the diagram above analyses and documents the surface run-off pattern of the incident precipitation. Due to the ground conditions on site, certain areas indicate a more sporadic drainage pattern while others indicate a contiguous flow pattern.

Based on the land layout and the ridge pattern on site, the drainage is multi-directional. Most of the surface water flows centrally towards the Northern side and some towards the southeastern edge, leading to the existing lake. Substantial water flow drains towards the National Highway to the west; all other edges indicate water draining outwards to the valleys on the east and beyond the site boundaries.
WATER SYSTEMS

Water collection pond with rocky bed.

Large, dry open well adjacent to the site boundary now used through a bore-well.

Check dam built of naturally available materials to control soil erosion and direct the flow of water.

Detention pond collecting storm water run-off. The water is muddy with the eroded soil carried by run-off.

Dam formed with boulders from the site to collect storm water run-off.

Naturally vegetated swale that carry water from the catchment to collection ponds.

Streams carrying overflow from the ponds on the site.

Pond formed to capture water from the underground spring.

6th GRIHA Regional Conference on ‘Accelerating Sustainability in Built Environment’

MOHAN S RAO
MAJOR WATERSHED ZONES

WATERSHED LEGEND

<table>
<thead>
<tr>
<th>SL NO.</th>
<th>AREA (IN SQMTRS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WATERSHED A</td>
<td>302294</td>
</tr>
<tr>
<td>WATERSHED B</td>
<td>216491</td>
</tr>
<tr>
<td>WATERSHED C</td>
<td>99344</td>
</tr>
<tr>
<td>WATERSHED D</td>
<td>67321</td>
</tr>
<tr>
<td>WATERSHED E</td>
<td>85028</td>
</tr>
<tr>
<td>WATERSHED F</td>
<td>55470</td>
</tr>
<tr>
<td>WATERSHED G</td>
<td>128972</td>
</tr>
<tr>
<td>WATERSHED H</td>
<td>138288</td>
</tr>
</tbody>
</table>

WATERSHED A ; WATERSHED D
WATERSHED C; WATERSHED G
WATERHSED E; WATERHSED F
WATERHSED B; WATERHSED H

DISTRIBUTION GRAPH OF WATERSHED ON SITE

EXISTING CONDITIONS

The profile of the drainage pattern and the micro watershed formation, established the Major Watershed areas of the site which are as demarcated in the drawing. The site as identified, has 8 MAJOR WATERSHED AREAS with the largest being the WATERSHED ZONE A that drains towards the northern side of the site. The existing lake on the southern side of the site is part of WATERSHED ZONE B.

Though most of the surface water flow flowing in WATERSHED ZONES A, B, G & H may be harvested on site as part of the development, the other watersheds need to carefully developed so as to not affect the water rights and potential usage by settlements situated beyond the site extents. This is especially important as there are ancuts (traditional check dams) and water harvesting structures documented beyond the site extents that are fed by WATERSHED ZONE C & E.
EXisting CONDITIONS

The valley pattern identified on site for each watershed zone, as indicated in the diagram, is a reflection of the regional ‘DENDRITIC’ pattern of valley system. The most prominent valley pattern on site as seen on ground and reflected in the diagram above is the one that flows within WATERSHED ZONE A and eventually connects to the water channel that abuts the northern edge of the site. WATERSHED ZONE B also reflects the presence of well-defined drainage channels which mostly feed the lake existing on site. The valley as identified on in WATERSHED ZONE C is not very prominent on ground physically but channelizes substantial water towards the water body beyond the edge of the site. The drainage valleys along Watershed E, A, G & H eventually drain in to the nala and moves eastwards.

All the valley zones and watersheds identified will be the main criteria for developing the structure of the Master Plan; these critical zones being conserved and manage to harvest, retain and recharge the natural balance of land. The built programs on site, based on the land capacity of each Watershed along with visual qualities of the site, shall be organized in and
EXISTING CONDITIONS

The entire watershed A and most part of B and C are under agricultural practice. The eastern part of the site is dotted by weathered rock formations with scrubby. Along the streams many traditional water structures are built. There are three commons on the site which are demarcated by exposed rock bed. Some of the non-cultivated areas are dominated by fields of grass. Two patches on the site are used as Eucalyptus plantation.

The analysis of the current Land Use practices enables in identifying and establishing suitable areas for future development with respect to existing features on site, but mores so with the quality of soil and normal practices already embedded in the land. It also helps in demarcating physically the areas and zones that need to carefully conserved and managed as well as areas where introduction of new land use practices would not impact the overall health and management of the site.
LAND USE CHARACTER

- Groves of trees with a fragmented view of the surrounding
- Plantation of exotic vegetation with degraded soil character
- Rocky landscape with understorey vegetation, overlooking the region
- Fallow land with few weed and grass patches and mostly with exposed top soil
- Highly degraded land with negligible vegetation cover and severe soil erosion with gully formations
- Patches of grassland dominate the landscape

- Critical catchment with existing network of traditional water systems
- Ridge area as vantage point with a wide open view of the region
- Rocky outcrops as village commons with characteristic thatch mounds
- Burial ground and irrigation tanks as village commons
- Boulder formations dominate the landscape

- Cultivated land with mixed cropping practice
- Cultivated land with mono crops and degraded soil character
- Terraced fields with good soil condition

EXISTING CONDITIONS

The entire watershed A and most part of B and C are under agricultural practice. The eastern part of the site is dotted by weathered rock formations with scrubby. Along the streams many traditional water structures are built. There are three commons on the site which are demarcated by exposed rock bed. Some of the non-cultivated areas are dominated by fields of grass. Two patches on the site are used as Eucalyptus plantation.

The analysis of the current Land Use practices enables in identifying and establishing suitable areas for future development with respect to existing features on site, but mores so with the...
LAND CAPABILITY ANALYSIS

BUILDABLE FEASIBILITY
B I: Based on high visual quality, gentle slope, existing site features and soil character the land is suitable to be built on.

B II: Moderate visual quality, slightly degraded soil, fallow landscape and the influence of existing site elements.

B III: Not feasible to build due to terrain, presence of elements like rocky outcrops and burial ground and dense groves of trees.

RECREATIONAL FEASIBILITY
R I: Elevated ridges, village commons, rocky outcrops, dense groves and water systems along with high visual quality makes the space potential for Recreational activities.

R II: Non productive, moderately buildable, high to medium visual quality of space.

PRODUCTIVE LANDSCAPE FEASIBILITY
P I: Existing agricultural practices on terraces with good soil condition and to retain the regional character is defined as Productive zone I.

P II: Fallow lands, with average soil condition and few rocky outcrops have the potential to be build on and productive too.

ECOLOGICAL FEASIBILITY
E I: Critical zone for water, soil and ecological conservation. Elements like existing trees, streams and indigenous vegetation makes it an Ecological zone I.

ENERGY FEASIBILITY
En I: For the self sufficiency of the settlement, renewable source of energy can be harvested at areas with high elevation, devoid of any physical obstruction and non buildable and non cultivable areas. Which makes this as Energy zone.

EXISTING CONDITIONS
The valley pattern identified on site for each watershed zone, as indicated in the diagram, is a reflection of the regional ‘DENDRITIC’ pattern of valley system. The most prominent valley pattern on site as seen on ground and reflected in the diagram above is the one that flows within WATERSHED ZONE A and eventually connects to the water channel that abuts the
STORMWATER MANAGEMENT REQUIREMENT

If rainfall intensity exceeds the infiltration rate, and all other abstractions are saturated, runoff will occur. The amount of rainfall that becomes runoff during a storm is called the effective rainfall. Abstractions other than infiltration and surface storage can be ignored in a storm event. So, effective rainfall equals precipitation less infiltration and surface storage.

Effective rainfall, or runoff, is expressed by units of length. One cm (inch) of runoff is the runoff produced by one cm (inch) of effective rainfall over a specified site.

Curve number approach to estimating runoff

The curve number (CN) is a characteristic of soil type and cover.

Soil is divided into four hydrologic soil groups (HSGs) based on their infiltration capacity. Group A soils have the most rapid infiltration, and group D have the slowest. Generally, A soils are sandy, and D soils are heavy clays. The CN represents the potential for a soil to produce runoff from a given rainstorm.

The site belongs to the hydrological soil group D.

In the CN method, effective rainfall or runoff is estimated by the relationship:

\[Q = \frac{(P - 0.2S)}{P + 0.8S}, P > 0.25 \]

\(Q \) is the effective rainfall or runoff in inches or mm, \(P \) is precipitation, and \(S \) is a parameter given by:

\[S = \frac{(1000)}{CN} - 10 \]

Precipitation (P) in inches = 5

The following calculations provide the volume of storm water that has to be ameliorated with integrated Management Practices.

IMP practices are distributed, multifunctional, small-scale controls, selected for their ability to achieve the site design water quantity and quality objectives in a cost-effective manner. Clearly, BAU practices would require more IMPs than LID.

<table>
<thead>
<tr>
<th>Groundcover</th>
<th>Curve number (CN)</th>
<th>Effective Rainfall (Q)</th>
<th>Precipitation (P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard paved, roofs etc.</td>
<td>98</td>
<td>2.02</td>
<td>8.4</td>
</tr>
<tr>
<td>Turf</td>
<td>85</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Row crops</td>
<td>84</td>
<td>100%</td>
<td>0%</td>
</tr>
<tr>
<td>Wood with light understory</td>
<td>70</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Wood with dense understory</td>
<td>77</td>
<td>100%</td>
<td>0%</td>
</tr>
</tbody>
</table>

The retention volume in cubic m (area of site in sq.m. multiplied by the difference in effective rainfalls of any case-study and the virgin landscape)

AUGUST 2013

ECOSYSTEM SERVICES REPORT

WATER

MOHAN S RAO
| Design | Principles | Objectives | Implementation Index (100) | Time of implementation (1=High, 2=medium, 3=low) | Cost of implementation (1=High, 2=medium, 3=low) | Skills Required (1=High, 2=medium, 3=low) | Cost of maintenance (1=High, 2=medium, 3=low) | Skills/Materials (1=High, 2=medium, 3=low) | Maintenance Index (100) | Run Off Volume (1=High, 2=medium, 3=low) | Resilience (1=High, 2=medium, 3=low) | Flexibility of the system (1=High, 2=medium, 3=low) | Downstream Impacts (1=High, 2=medium, 3=low) | Flood Mitigation Index (100) | Increased biodiversity (1=High, 2=medium, 3=low) | Erosion Prevention (1=High, 2=medium, 3=low) | Water Recycling (1=High, 2=medium, 3=low) | Waste Recycling (1=High, 2=medium, 3=low) | Absorption/Reduction of Pollution (1=High, 2=medium, 3=low) | Environmental Index (100) |
|--------|-----------------------------|---|-----------------------------|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Soft rainwater management | Drained rainwater management | Soft River Edge | Hard River Edge | Open Space | “Un-Productive” | Soft | Motorized | Decentralized | Centralized | Recycled | Non-recycled |
| Rainwater Management | River Edge | Open Space | Mobility | Water Management | Waste Management |
| - Bio-swale, - Permeable parking surface, - Infiltration System | - Storm-water drainage system | - Embankment of the river edge, Built canal, - Urban Farming - Community sharing open space | - Park and Playgrounds (natural or impervious ground), - Dedicated and secured pedestrian and cycle paths, - Proximity with public transport | - Road widening, - Phytomedia in treatment plants, - Artificial wetland | - Piped water supply and drainage, - Compost of organic waste, - Centralized Waste Disposal at City Level |
| Soft rainwater management | Drained rainwater management | Soft River Edge | Hard River Edge | Open Space | “Un-Productive” | Soft | Motorized | Decentralized | Centralized | Recycled | Non-recycled |
| Time of implementation (1=High, 2=medium, 3=low) | 2 | 3 | 3 | 1 | 2 | 1 | 1 | 1 | 2 | 2 | 2 | 2 |
| Cost of implementation (1=High, 2=medium, 3=low) | 3 | 1 | 3 | 1 | 2 | 3 | 2 | 1 | 3 | 1 | 3 | 2 |
| Skills Required (1=High, 2=medium, 3=low) | 2 | 1 | 2 | 1 | 3 | 1 | 2 | 2 | 1 | 1 | 3 | 2 |
| Implementation Index (100) | 78 | 56 | 89 | 33 | 78 | 56 | 56 | 44 | 67 | 44 | 89 | 67 |
| Frequency of maintenance (1=High, 2=medium, 3=low) | 3 | 1 | 2 | 3 | 1 | 2 | 2 | 2 | 2 | 1 | 2 | 2 |
| Cost of maintenance (1=High, 2=medium, 3=low) | 2 | 1 | 1 | 2 | 2 | 1 | 2 | 2 | 2 | 1 | 2 | 1 |
| Skills/Materials (1=High, 2=medium, 3=low) | 2 | 3 | 3 | 2 | 2 | 2 | 3 | 3 | 2 | 1 | 2 | 2 |
| Maintenance Index (100) | 78 | 56 | 67 | 56 | 56 | 56 | 78 | 78 | 67 | 33 | 67 | 56 |
| Run Off Volume (1=High, 2=medium, 3=low) | 3 | 1 | 3 | 1 | 3 | 1 | 2 | 1 | 3 | 1 | - | - |
| Resilience (1=High, 2=medium, 3=low) | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 2 | 1 | 3 | 1 |
| Flexibility of the system (1=High, 2=medium, 3=low) | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 |
| Downstream Impacts (1=High, 2=medium, 3=low) | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 3 | 1 | - | - |
| Flood Mitigation Index (100) | 93 | 33 | 93 | 33 | 93 | 33 | 80 | 33 | 93 | 33 | 100 | 33 |
| Increased biodiversity (1=High, 2=medium, 3=low) | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | - | - |
| Erosion Prevention (1=High, 2=medium, 3=low) | 3 | 1 | 3 | 1 | 3 | 1 | - | - | 3 | 1 | - | - |
| Water Recycling (1=High, 2=medium, 3=low) | 2 | 1 | 2 | 2 | 2 | 2 | 3 | 1 | - | - | - | - |
| Waste Recycling (1=High, 2=medium, 3=low) | 2 | 1 | 2 | 2 | 2 | 2 | 1 | - | - | 2 | 1 | 3 |
| Absorption/Reduction of Pollution (1=High, 2=medium, 3=low) | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 | 3 | 1 |
| Environmental Index (100) | 87 | 33 | 87 | 33 | 100 | 40 | 100 | 33 | 93 | 33 | 100 | 33 |
En I: For the self-sufficiency of the settlement, renewable source of energy can be harvested at areas with high elevation, devoid of any physical obstruction and non-buildable and non-cultivable areas. Which makes this as Energy zone.

En I: For the self-sufficiency of the settlement, renewable source of energy can be harvested at areas with high elevation, devoid of any physical obstruction and non-buildable and non-cultivable areas. Which makes this as Energy zone.

LAND CAPABILITY MODULATION

En I: For the self-sufficiency of the settlement, renewable source of energy can be harvested at areas with high elevation, devoid of any physical obstruction and non-buildable and non-cultivable areas. Which makes this as Energy zone.

En I: For the self-sufficiency of the settlement, renewable source of energy can be harvested at areas with high elevation, devoid of any physical obstruction and non-buildable and non-cultivable areas. Which makes this as Energy zone.
6th GRIHA Regional Conference on 'Accelerating Sustainability in Built Environment'
6th GRIHA Regional Conference on ‘Accelerating Sustainability in Built Environment’
EVLVING A STRATEGY BASED ON TRADITIONAL INTELLIGENCE
Site Watershed mapping and Surface hydrology

The region has a general slope towards the south-east direction (refer Fig based on Digital Elevation Model and Hill Shade Map for the region by National Remote Sensing Agency, (NRSC), Hyderabad). The hilly outcrop towards the west of the site standing 247m (above M.S.L.) high comes down to 233m at the site. The topography elevates again to reach a height of 247m at the peak of another hilly outcrop beyond Gharav village to the east of the site. The run-off from the region flows into the two seasonal rivers that flank the river on the north and south of the site. It is also observed that the major flow of water from the hilly outcrop in the west should be towards the south-east, but the presence of smaller outcrops to the south of the site divert the flow in a way that it flows southwards.
EXISTING SITE PHYSICAL AND GEOLOGICAL CONDITIONS

The general topography of the part-site A has been modified greatly by agricultural bunds with a general site slope towards south. Part-site B shows a slope towards the highway. The pediment of hill outcrop to its east receives runoff from the hill, the flow being disrupted by the highway. Part-site C is largely flat.

Texturally, soils are sandy to sandy loam with silty clay-loam and the soils are salty. Very shallow soil-depth (less than 25cm) exists along edge of the Highway (Ref. Fig. B.4.1.c). Shallow soil-depth (25-50cm) exists along the central zones of Site A and Site B. Moderately Shallow soil-depth (50-100cm) lies towards the rear edges of the site. Below the topsoil (silty sand) and course gravel bed, varying depths of shallow soft rock occur.
Interpretation of Watersheds

Watershed edges:
A network of interconnected ridge lines, from which incident water run-off is maximum. Hence most impervious surfaces and permanent structures that need drainage can be situated on this area.

Watershed plains:
These are flat or slightly sloping surfaces which are bound by raised edges. There is maximum infiltration of incident water on these surfaces, which hence must be left pervious.

Strategies for Watershed Usage

- Water feature
- Agriculture
- Woodlands / Agro forestry
- Road / Infrastructure
- Watershed Surface
- Watershed boundary ridge
- Road
- Academic / Residential
- Sports field
- Vegetation
- Recreation
- Woodlands Agro-Forestry
- Watershed surface
- Commercial Industrial
- Institutional Residential
- Recreation
- Agriculture
- Sports field
ESTABLISHING GREEN INFRASTRUCTURE

In a broader sense, green infrastructure consists of the inherent natural green resources as well as the built infrastructure comprising of storm water drains, waste water utilization set ups etc. which can be merged with the surrounding landscapes.

NATURAL
Ecological corridors:
- wildlife corridors
- bio-diversity hub

Special vegetation reserves:
- For threatened species
- For medically important species

Buffer plantations:
- Shelterbelts and wind breaks
- Woodlands ‘orans’
- Orchards
- Energy plantation
- Horticulture
- Agriculture

BUILT
Storm water collection:
- Surface run-off (paved surfaces)
- Roof top run-off
- Reed beds
- Water harvesting structures

Waste water and sludge treatment and re-utilization (DEWAT):
- Settling tanks
- Underground chambers
- Gravel filter (constructed wetlands)
- Polishing pond (constructed wetlands)
- Vermicomposting pits
- Biogas chambers

Circulation:
- Pedestrian
- Cycle
- Vehicular

Other Services

6th GRIHA Regional Conference on ‘Accelerating Sustainability in Built Environment’
WILDLIFE CORRIDOR AND BIO-DIVERSITY HUB

Shrubs
- Capparis decidua Kat
- Leptadenia pyrotechnica Khimp
- Balanites aegyptiaca Hingota
- Acacia jacquemontii Bhu-Bovali
- Zizyphus nummularia Bordi
- Acacia nilotica Babool
- Grewia tenax Gangeti
- Echinops echnatus Unkantara
- Fluegga leucopyrus Ghatbar
- Sarcostenma acidum kheer kheemp (outcrop)
- Euphorbia caducifolia Thbor
- Commiphora wightii Gagul
- Calligonum polygonoides - phag
- Sueda fruticosa - potassium content good
- Euphorbia nerifolia
- Calotropis procera Aak

Herbs
- Tephrosia purpurea Buena
- Solanum suattense Bhurangni (Chhoti Kateli)
- Crotonia burhia Simia
- Fagonia arabica Dhamasa
- Indigofera cordifolia Bekria
- Aerva javanica Bui
- Cassia angustifolia Sonamukhi
- Corchorus depressus Cham ghas

Grasses
- Cenchrus biflorus Bhurat
- Desmostachya bipinnata Dab
- Cenchrus ciliaris Dhaman
- Lasiurus sindicus Sewan
- Panicum antidotale Gramma
- Aristida adscensionis Lopla

Trees
- Prosopis cineraria - kheji
- Tecomella undulata - rabida
- Salvadora oleoides - Meetha jaal
- Acacia senegal Kumath
- Maytenus emarginata Kankra
- Balanites roxburghii Hingota
- Salvadora persica peelu
- Cordia gharof Goondi
- Moringa conconensis Sargoara
- Acacia leucophloea - safed kilar
- Angelica rotundifolia
- Tamarix articulata - farash
- Azadirachta indica Neem
- Zizyphus rotundifolia Ber

ECOLOGICAL LANDSCAPES BIO-DIVERSITY HUB

Bio-diversity hub deals with development and management of indigenous species of plants to regenerate natural landscape of the region. Best left undisturbed by heavy human interference, trails through this hub can be used for study purposes.

ECOLOGICAL RESTORATION OF NON-ARABLE LANDS

Starting with pioneering species of vegetation that occupy a piece of uninhabited land first, the regeneration process would continue with other native plant species of the region. As a buffer/transition from inhabited spaces for such areas, vegetation reserves for threatened species or medically important species, energy plantations or orchards, agriculture or horticulture, or grasslands/pasturelands can be proposed.
Schematic Built and Open Relationship

Built organization with central space as a pedestrian core.

Master Plan Structure Plan

The diagram above represents the basic structure plan of the master plan, indicating the distribution of built form within the campus, the hierarchies and intensity of open spaces in the campus and the circulation plan of the campus. The plan also reflects the spatial organization of the conserved spaces in the master plan, that perform as a parallel entity as spaces of productive and ecological benefit not only for the campus but also toward regional biosphere continuity.
View of the transect between the Building and Conservation Zone

View of the Conserved Watershed Zone - Productive Landscape

6th GRIHA Regional Conference on ‘Accelerating Sustainability in Built Environment’
LANDSCAPE AS A ECOSYSTEM SERVICE FEEDBACK AGENT
6th GRIHA Regional Conference on 'Accelerating Sustainability in Built Environment'

MOHAN S RAO