# Energy Efficiency in Buildings & Façade Design

## Case Study: ITC Green Centre, Bangalore

Delhi | Feb 15 2016

eds





eds

Orientation
Floor-plate depth
Insolation and Shading of external facades
High-performance fenestrations (parametric analysis)

Optimized Window Wall Ratio (WWR)
High-performance glazing
Optimized shading devices for fenestrations

Daylight integration & controls
Light-colored interiors

## Major factors for façade optimization





















| Parameter                     | Value                       |
|-------------------------------|-----------------------------|
| Occupant density              | 10.0 m <sup>2</sup> /person |
| Light Power Density [LPD]     | 8.0 W/m <sup>2</sup>        |
| Equipment Power Density [EPD] | 4.0 W/m <sup>2</sup>        |
| Cooling set point             | 24.0 deg C                  |
| Heating set point             | 21.0 deg C                  |
| Threshold illuminance         | 200.0 lux                   |

# Inputs for Thermal and Daylight Analysis

Energy Efficiency in Buildings and Façade Design

eds

eds@

| Building  | Reflectance | U-value    | SHGC | VLT (%)    |
|-----------|-------------|------------|------|------------|
| component | (%)         | (KWh/m2/y) |      |            |
| Walls     | 50          |            |      | 영영 요소 이 영경 |
| Ceiling   | 70          |            |      |            |
| Floor     | 20          |            | - 1  |            |
| Window    | 80          | 3.3        | 0.25 | 40         |

# **Material Properties**











eds@



### UDI Distribution and Variation in Energy Use for Different Window Positions















eds

| Conditioned Area |                     |          |          |          |          |           |
|------------------|---------------------|----------|----------|----------|----------|-----------|
| WWR              | WWR<br>Visible Area | Cooling  | Lighting | Total    | Peak     | % Savings |
|                  |                     | KWh/sqft | KWh/sqft | KWh/sqft | Sqft/Tr  |           |
| 29%              | ő<br>34%            | 3.36     | 6 1.247  | 4.613    | 439.43   | 18%       |
| 37%              | <b>4</b> 3%         | 3.45     | 9 1.22   | 4.686    | 5 428.44 | 16%       |
| 44%              | <b>6</b> 52%        | 3.56     | 7 1.216  | 6 4.784  | 417.13   | 13%       |
| 52%              | 61%                 | 3.68     | 1 1.213  | 4.894    | 406.40   | 11%       |
| 60%              | 6 70%               | 3.79     | 7 1.210  | 5.008    | 395.83   | 9%        |
| 67%              | 6 80%               | 3.91     | 6 1.209  | 5.125    |          |           |
| 75%              | 6 89%               | 6 4.04   | 1 1.208  | 3 5.249  | 374.20   | 3%        |
| 83%              | <b>6</b> 98%        | 4.16     | 9 1.207  | 5.376    | 5 361.68 | 0%        |

#### Impact of WWR on Energy





|                                              | Electricity rate<br>(Rs/kWh)   | 9                     |                        |  |
|----------------------------------------------|--------------------------------|-----------------------|------------------------|--|
| Cases                                        | Annual Energy Use<br>(kWhr/Yr) | Percentage<br>savings | Annual Cost<br>Savings |  |
| Basecase with no shading                     | 10,649,820                     |                       |                        |  |
| Basecase + 15 %perforated<br>aluminium panel | 6,922,383                      | 35                    | 33,546,933             |  |
| Basecase+ 20 %perforated aluminium panel     | 6,283,394                      | 41                    | 39,297,836             |  |
| Basecase + 25%perforated<br>aluminium panel  | 5,857,401                      | 45                    | 43,131,771             |  |
| Basecase + 30 %perforated<br>aluminium panel | 5,644,405                      | 47                    | 45,048,739             |  |



eds

eds

- Without shading devices, a WWR ratio of 20-30%, is optimum for maximum daylighting with minimum building energy performance.
- Having higher lintel levels provide better daylight penetration of daylight.
- ⊙With careful shading strategies, increasing the WWR from 20% to 60% increases the UDI by 4 times while increasing the energy consumption by only 1 KWh/m2/y (2.5%)

## Key Takeaways

33 Energy Efficiency in Buildings and Façade Design

In ITC Green Center, Bangalore, an integrated design process combined with parametric daylight simulations, made it possible to achieve adequate daylight in 100% of the regularly occupied spaces, without compromising on energy performance.

## Summary

34 New Presntation Style Dark

