

Focus on IAQ in India

Maija Virta

Founder, Director at Santrupti engineers Pvt. Ltd. REHVA Fellow, Member of ASHRAE and ISHRAE

Main Ambient Air Pollution in India

- Particulate matter (dust, fine and ultra-fine):
 - Traffic (especially diesel cars);
 - Energy production (especially coal power plants);
 - Chullahs and other open fire cooking;
 - Construction work;
 - Stubble burning;
 - Burning of waste;
 - Industrial process emissions.
- Gases (SO₂, NO₂, O₃, etc.)
 - Traffic;
 - Industrial processes;
 - Open sewage systems.

WHO: Ambient air pollution in cities database 2014

 $PM_{2.5}$ Annual average 2012 (µg/m³)

 Top 5 most polluted cities in USA: 		
 Fresno, CA Riverside-San Bernardino-Ontario, CA Los Angeles-Long Beach-Santa Ana, CA Fairbanks, AK Hanford-Corcoran, CA 	45 21 20 19 17	2-5 times higher
 Top 5 most polluted cities in India: 		
 Delhi Patna Gwalior Raipur Ahmedabad 	153 149 144 134 100	10-15 times higher
 Iop 5 most polluted cities in Australia: Busselton Bunbury Adelaide Launceston Perth 	9 8 8 8 7	< WHO AQG level
	10	

sustainable engineering

WHO AQG level: $< 10 \,\mu g/m^3$

3

UNEP: Economic Cost of Air Pollution

- Worldwide over 3.5 million people die each year from outdoor air pollution.
- Between 2005 and 2010, the death rate rose by 4% worldwide, by 5% in China and by 12% in India.
- Cost of air pollution to society in 2010 was estimated at USD 1.4 trillion in China and USD 0.5 trillion in India according to a recent study by the OECD.
- In US about 85% of the economic benefits would be due to fewer premature deaths linked to reducing PM_{2.5} in the outdoor environment.

Annually in India INR 30,000,000,000,000 INR 25,000 per person

Source: http://www.unep.org/yearbook/2014/PDF/chapt7.pdf

Indoor Air Quality

- Outdoor air is the biggest indoor air pollution source if air is not properly filtered and purified before taken indoors;
 - Particulate pollution
 - Gases
- Other indoor air pollution sources are:
 - Tobacco smoking;
 - Copy machines and printers;
 - Cleaning products;
 - Moisture damages and mould growth;
 - Paints, solvents and other construction materials;
 - New furniture;
 - Scents (perfumes, temple sticks, etc.);
 - Other people.

Examples of Air Filtration Solutions GASES: NOT **Relative Mass Concentration** FILTERED 8 WASHABLE FILTER COOLING COIL 6 **Industry norm** FAN 4 in India today 2 FILTERED 0.1 0.4 1 2.5 5 10 100 0.01 Particulate size (µm) GASES: NOT **Relative Mass Concentration** 8 FILTERED WASHABLE PRE-FILTER COARSE FILTER COOLING COIL 6 FINE FILTER FAN 4 2 FILTERED **FILTERED** 2.5 5 10 100 0.1 0.4 1 0.01 Particulate size (µm)

Are Room Air Purifiers Focusing on Essential Issues in India?

- Nearly every model is developed to solve IAQ problems in special cases:
 - Fungal and bacteria growth in moisture damaged buildings;
 - In environments with much lower dust and RSPM levels in outdoor air.
- Recommended for occupants who has reduced lung capacity, allergy or asthma and therefore most of room air purifiers are developed to remove or kill microbiological contamination.
- 1. HEPA filter to remove particulates and microbiological contamination
 - No proper coarse particulate filtration to protect HEPA filter
 - => Life time of HEPA is only 6-12 weeks
 - => High filtration cost

- 2. Different technologies to sterilize air:
 - UV-light
 - Gold plasma
 - Photo-hydro-ionization
 - etc.
- 3. Deodorization of air:
 - Oxidation
 - Ionizer unit
 - Ozoniser unit
 - Use of Silver ions, Diatoms & Vitamins
 - etc.

Are these really needed in every home, school and office?

Pressurization of Spaces

Ambient ±0

Critical: air flow balancing and control, pressure measurement

Case study: Different solutions in office building

- Existing office building 2,000 m2, 4 x AHU each 10,000 cfm.
- Room air purifier:
 - High quality air purifiers, 50 pcs (each 35 m2);
 - Filters changed annually 4 times, each package INR 10,000;
 - Energy use 80 W/unit, operating 10 h/day, 250 days a year.
- Ambient air purifier:
 - Fan-filter units, each 2,000 cfm, installed at the point of indoor air intake, 4 pcs;
 - Pre-filters washed annually 7 times, coarse filters changed 3 times and fine filters once a year;
 - Energy use 6.6 kW/unit (EC fan).
- Air handling unit retrofit new filter package and EC fan:
 - New filter packages (pre, coarse and fine filter) retrofitted;
 - Pre-filters washed annually 7 times, coarse filters 3 times and fine filters once a year;
 - New EC-fan consumes 40% less energy, saving 6 kW/unit.

Investment and Annual Costs

	Room air purifiers 50 pcs, each 35 m2	Retrofit of existing AHU (new filters + EC fan)	Ambient air purifiers 4 pcs in outdoor air intake
Technical review, design, project management	0	□ 4,00,000	□ 4,00,000
Equipment, installation, civil and electrical work	□ 50,00,000	□ 43,00,000	□ 18,00,000
Duct cleaning and retro- commissioning of existing system	0	□ 3,00,000	□ 3,00,000
Total investment	□ 50,00,000	□ 50,00,000	□ 25,00,000
Annual filter change cost	□ 20,00,000	□ 3,00,000	□ 1,50,000
Energy cost / saving	□ 60,000	□ -3,00,000	□ 4,00,000
Total annual cost	□ 20,60,000	0	□ 5,50,000

Parameters to be Measured in Indoor Air

BASIC:

- Dry-bulb air temperature (T)
- Relative humidity (RH)
- Carbon Dioxide (CO2)
- Respirable Suspended Particulate Matter PM2.5
- Respirable Suspended Particulate Matter PM10
- Carbon Monoxide (CO)
- Total Volatile Organic Compounds (TVOC) ADDITIONAL:
- Formaldehyde (HCHO)
- Benzene (H6C6)
- Ozone (03)
- Sulphur Dioxide (SO2)
- Oxides of Nitrogen (NOx)
- Total Fungal Count

ISHRAE is preparing the IEQ standard for India:

- IAQ
- Thermal comfort
- Lighting
- Acoustics
- User feedback

Solutions for Good IAQ in India

- Clean the outdoor air before taken into a building:
 - Sufficient particulate filtration;
 - Chemical filtration if ambient air has high gas concentrations.
- Use sufficient ventilation to manage CO2 and relative humidity indoors.
- Make sure that air flows are properly balanced.
- In case Room air purifiers are used, prefer the models with good particulate filtration. Avoid unnecessary sterilization of air.
- Use low or non-VOC construction materials, furniture and cleaning products.
- Locate copy machines and printers to separate rooms.
- Prevent moisture damages and act immediately to remove the cause and repair damages.
- Use of plants to reduce need for polluted ambient air intake – but remember maintenance of them.

WELL Building Standard & India

- INCREASED VENTILATION no requirement for filtration.
- MICROBE AND MOLD CONTROL / COOLING COIL MOLD REDUCTION – safety issues related to retro-installation of UV-lights, cheap labour in India to maintain cooling coils.
- ADVANCED AIR PURIFICATION / AIR SANITIZATION may reduce people's immunity against air pollution that is still much better than those in Western countries.
- DISPLACEMENT VENTILATION in low ceiling height spaces not necessarily more energy efficient and improvement in air quality depends on the diffuser selection.

Clean Air

şantrupti

sustainable engineering