

SABIC Research & Technology Pvt. Ltd.

Location : Sarjapura, Bangalore, Karnataka

Site area : 180773.0 m²

: 17096 m2 (B1, B3 and B5 block only) **Built-up area**

Air-conditioned area : 11840 m² Non-Air-conditioned area : 5256 m²

Energy consumption reduction : 19.38 % reduction in energy consumption compared to

GRIHA benchmark

EPI : 104 KWh/m²/vear (Weighted Avg. of 3 blocks) Base case Benchmark EPI : 129 KWh/ m²/year (Weighted Avg. of 3 blocks) Renewable Energy : Rated capacity of solar PV installed on site is 9 KW

GRIHA provisional rating Year of completion 2013

The following strategies were adopted to reduce the building impact on the natural environment:

Sustainable site planning:

- Demonstration of exemplary site management practices through effective top soil preservation and storm water management during construction.
- · Protection of existing trees at site during construction. In addition, tree transplantation & extensive re-plantation of native trees as part of landscape plan.
- Effective air pollution control strategies through site barricading, regular water sprinkling on loose soil, truck wheel washing and seeding the road banking.
- Initiatives for staff and construction workers' health, safety and sanitation include clean hygienic accommodation and toilet facilities, RO drinking water, creche and schools for children of construction workers etc.

Reducing water consumption:

- Use of low flow plumbing fixtures and faucets to cut down water use inside the building by about 78% compared to GRIHA
- About 50% reduction in landscape water consumption by planting native species of trees and shrubs and by using efficient
- 100% on site treatment of waste water generated through CETP plant installed and reuse of treated waste water for flushing & landscaping at site.

Reducing energy consumption (compared to GRIHA benchmarks) while maintaining occupant comfort:

o For achieving visual comfort:

- Selection of high performance double glazing assisted with effective external shading to reduce solar heat gain and have glare-free daylight in lab and office areas.
- ECBC compliant energy-efficient artificial lighting design.
- o For achieving thermal comfort:
- High performance building envelope, double glazing assisted with external shading and over deck roof insulation to cut down heat gains inside the building.
- Efficient HVAC system with high COP water cooled screw chillers, heat pumps, heat recovery/exchanger mechanisms, AHUs with VAVs along with VFDs on motors etc. to minimize overall cooling energy consumption.
- HVAC system designed in line with ASHRAE 55 to meet the thermal comfort requirements of the occupants.

Renewable energy technologies installed on site:

- . 5.5 kwp of solar photovoltaic system is used to compensate part of internal lighting load
- Solar photovoltaic based outdoor lights of 3.5 kwp are installed on site.
- About 94% of annual energy for hot water requirement of B1, B3 and B5 block is saved by solar hot water system of 800 litres capcity installed at site.

Use of low energy materials:

- Portland Pozzolona cement (PPC) with 30% replacement by fly ash has been used in structural concrete, masonry blocks and
- · Many of the interior finishes used in the project have recycled content within them and are procured locally within 800 kms from project site.

Integrated Design Team:

Landscape Architect

Electrical Consultant

: Saudi Basic Industries Corporation (SABIC)

Project Coordinator

: Mr Subrato Dey (SABIC)

Principal Architect : Venkataramanan & Associates, Bangalore

Design milieu, Bangalore

Project Management Consultant Cushman & Wakefield Structural Consultant Nadia Consultina Pvt. Ltd.

: PM engineering Services(India) Pvt. Ltd, Bangalore

Green Building Design and Certification : Eco 3 Design Consultants, Bangalore